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Figure 1: Back End Block Diagram

1 Beamformer Backend

1.1 Introduction

The Focal L-Band Array for the Green Bank Telescope (FLAG) is an in-development 38-element phased
array feed (PAF) 150-MHz analog receiver and digital processor for the purposes of HI surveys and radio
transient searches. It is expected to be instrumental in discovering more than 50 new pulsars with in the
inner galactic plane [fbpn2 pulsarDetection.pdf on beamformer web] and studying diffuse HI around galaxies
[fbpn1.pdf on beamformer web].

The entire PAF receiver comes in two parts: the analog receiver (amplification, downconversion, sampling,
and signal transport) and the digital processor. A block diagram showing all of the back end is shown in
Figure 1. The PAF consists of 19 dual-polarization flared dipoles (see Figure 2) connected to 40 cryogenically
cooled low-noise amplifiers (LNAs), two of which are unconnected. The 40 amplified analog bandpass
signals are mixed down to baseband, with the inphase (I) and quadrature (Q) components each sampled
at 155.52 MHz. The digitized I/Q signals are then serialized and sent over 40 optical fibers to five eight-
port optical receiver cards connected to five field-programmable gate array (FPGA) boards each called
Reconfigureable Open-Architecture Computing Hardware (ROACH) boards.

The ROACH boards channelize the approximately 150-MHz sampled bandwidth into 512 frequency
channels, each with a bandwidth of approximately 303 kHz. The data are then pared down to 500 frequency
channels and packetized into 10 user-datagram protocol (UDP) packets each containing 50 frequency samples
for eight antennas across 20 time samples. These packets are streamed over 10-GbE/40-GbE breakout cables
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Figure 2: GBT-2 Dipoles

into a 12-port 40-GbE network switch, which redirects packets into five high-performance personal computers
(HPCs) such that each HPC receives 100 frequency samples for all 40 antennas. Each HPC then takes these
100 frequency samples and divides them evenly between two graphics processing units (GPUs), which house
a real-time beamformer and correlator.

This document intends to explain the inner workings of the HPCs. Section 1.2 describes the different
operational modes the HPCs must support for FLAG. Section 1.3 goes over the server’s specifications and
that of its peripherals (such as GPU card models and specs). Section 1.5 describes the real-time operating
system (RTOS) used for thread management and pipelining known as HASHPIPE (or #PIPE). Section 1.6.1
documents the GPU-based real-time correlator library xGPU and polyphase fine-filterbank (PFB) channel-
ization library Grating. Section 1.7 revisits the various operational modes from Section 1.2 with great
implementation details.

1.2 Operational Modes

There are two primary modes of operation: coarse PFB mode, fine PFB mode and real-time beamformer.
The coarse PFB mode produces spatial covariance matrices across 303-kHz channels for radio transient
searches and PAF beamformer weight calibration, and the fine PFB mode correlates across 160 9.5-kHz
channels for HI surveys. The real-time beamformer that forms seven beams and accumulates across coarse
frequency channels every 0.1 ms. A full block diagram is depicted in Figure 3.

1.2.1 Coarse PFB Mode

In this mode, each GPU receives 50 coarse channels for all 40 antenna elements, totaling 15 MHz of band-
width. For PAF calibration, correlation matrices are computed for all 50 channels and accumulated for a
calibration-specified integration length, where 303 samples would correspond to 1 ms. For transient searches,
matrices are computed for only five channels for 0.1 ms, or 30 samples. Only five channels totaling a band-
width of 1.51 MHz are computed since the memory bandwidth demand for covariance dumps every 0.1 ms
approaches the specified limits of the GPU cards.

A real-time beamformer is also run with the coarse PFB, forming seven beams on all 50 coarse channels
and dumping every 0.1 ms.
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Figure 3: Block diagram describing the various operational modes.

1.2.2 Fine PFB Mode

This mode has the same structure as the coarse PFB mode except that it includes a fine PFB module for
further channelization prior to the correlator.

The PFB channelizes five coarse frequency channels (303 kHz each, totaling 1.51 MHz) into 160 finer
channels (9.5 kHz each, totaling 1.51 MHz). These are then correlated, and matrices are dumped every 0.5
seconds or approximately 4,734 samples. All 160 fine-channel correlation matrices are loaded off the GPU
for FITS file formatting since the relatively large integration time reduces the required memory bandwidth.

1.3 HPC Specifications

Each HPC is a Mercury GPU408 4U GPU Server purchased from Advanced HPC (part number AH-GPU408-
SB14). A photo of one of these HPCs is shown in Figure 4. The machine comes with two Intel Xeon six-core
processors organized onto two independent PCI-E busses. A table of specifications for each HPC can be
found in Table 1. The PCI-E slots are populated with two GPU cards, two dual 10-GbE SFP+ network
interface controller (NIC) cards, and an Infiniband NIC card, with part designations summarized in Table 2.

1.3.1 Graphics Cards

There are two flavors of graphics cards used in the FLAG back end: the NVIDIA GeForce GTX 780 Ti and
NVIDIA GeForce GTX 980 Ti. Two of the GPUs are the 780 Ti model since they were purchased just prior
to their abrupt removal from the market by NVIDIA. Pertinent specifications for both cards are summarized
in Tables 3 and 4. The differences between the two cards in all critical performance specifications are
minimal, thus we do not anticipate any new throughput bottlenecks resulting from the swap.
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Figure 4: A photo of one of the five HPCs

Table 1: HPC Specifications
Feature Description
Processors 2x Intel Xeon E5-2630 v2 2.60 GHz six-core 80 W processors
Memory 32 GB DDR3 ECC
Hard Drives 2x 500 GB SATA 7200 RPM disks in RAID 1 configuration
Drive Bays 8x hot-swappable 3.5 inch drive bays (unpopulated)
PCI-E Slots 4x PCI-E 3.0 x16 slots (double width, two per processor)

2x PCI-E 3.0 x8 slots (one per processor)
1x PCI-E 2.0 x4 slot

Network Integrated Intel i350 dual port GbE LAN
Power Supply 1620 W platinum level efficiency redundant power supply
Height 4U
Rack Mountable Yes

Table 2: PCI-E Slot Population (out-of-date)
Slot Designation Populated With
CPU 1 Slot 2∗ Mellanox QSFP 40-GbE NIC
CPU 1 Slot 4∗ EVGA GeForce GTX 780/980 Ti Graphics Card
CPU 2 Slot 6∗ Mellanox Infiniband NIC Card (unknown part as of yet)
CPU 2 Slot 8∗ EVGA GeForce GTX 780/980 Ti Graphics Card
CPU 2 Slot 9+ Unpopulated
CPU 1 Slot 10+ Unpopulated
CPU 2 Slot 11† Unpopulated

∗ PCI-E 3.0 x16 slot. + PCI-E 3.0 x8 slot. † PCI-E 2.0 x4 slot.
∗ Each of these slots are double wide (to allow for the size of the GPU cards), resulting in missing slot numbers 1,3,5, and 7.
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Table 3: GeForce GTX 780 Ti Specifications
Specification Value
# CUDA Cores 2880
Base Clock Speed 875 MHz
Texture Fill Rate 210 GigaTexels/sec
Memory Clock Speed 7.0 Gbps
Memory 3 GB
Memory Interface Width 384 bits
Memory Bandwidth 336 GB/sec
Minimum Power Requirement 600 W

Table 4: GeForce GTX 980 Ti Specifications
Specification Value
# CUDA Cores 2816
Base Clock Speed 1000 MHz
Texture Fill Rate 176 GigaTexels/sec
Memory Clock Speed 7.0 Gbps
Memory 6 GB
Memory Interface Width 384 bits
Memory Bandwidth 336.5 GB/sec
Minimum Power Requirement 600 W

1.3.2 Network Cards

Each HPC is equipped with three network cards: two dual-port SFP+ 10-GbE cards for receiving packets
from the ROACH boards and an Infiniband Card for fully processed data transfers to a Lustre disk array
(see Figures 3).

1.4 Code Repositories

The following links go to the code repositories:

• HASHPIPE and CUDA code - https://gitlab.ras.byu.edu/ras-devel/flag

• Dealer/player code - https://gitlab.ras.byu.edu/ras-devel/beamformer-back-end

• MATLAB post-processing - https://gitlab.ras.byu.edu/ras-devel/matlab-post-processing

• FITS writer code - https://github.com/nrao/FLAG-Beamformer-Devel/tree/master/src

1.5 HASHPIPE

HASHPIPE is an RTOS that specializes in pipeline processing by splitting consecutive tasks into separate
threads with semaphore-controlled shared memory buffers in between each thread. A generic HASHPIPE
program block diagram is shown in Figure 5. Each task in a process is given its own parallel thread with
input and output shared memory buffers.

Each buffer is circular and consists of a number of blocks of data, where each block is usually the minimum
size of data needed by the next threads. Each block has an associated semaphore that is initialized to zero
(unavailable/free) and is set to one (available/filled) when the block contains valid data and is not being
used by any other thread. If the block’s semaphore is set to zero, any thread that requests that block’s data
will hang until the semaphore becomes available.

https://gitlab.ras.byu.edu/ras-devel/flag
https://gitlab.ras.byu.edu/ras-devel/beamformer-back-end
https://gitlab.ras.byu.edu/ras-devel/matlab-post-processing
https://github.com/nrao/FLAG-Beamformer-Devel/tree/master/src
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Figure 5: A generic HASHPIPE program.

1.5.1 HASHPIPE Plugins

When HASHPIPE is run on the command line as-is, it will result in nothing since it requires a plugin
that specifies the application to be run. In a sense, a HASHPIPE plugin is analogous to a program run
on any other conventional RTOS, but is distinct in that a HASHPIPE program is in the form of a shared
library. Thus, linking a shared library to HASHPIPE at run-time is like “plugging in” the software; hence
the “plugin” terminology.

A HASHPIPE plugin is basically a shared object that defines various threads and shared memory buffer
parameters. Each thread is encapsulated in a single .c file that contains a constructor function that is called
by hashpipe when its thread is created. An example constructor is shown below.

static __attribute__((constructor)) void ctor() {
register_hashpipe_thread(&thread_desc);

}

The argument thread desc is a hashpipe thread desc t struct defined in the thread’s .c file as follows:

static hashpipe_thread_desc_t thread_desc = {
name: "thread_name", // Name of the thread

skey: "KEYNAME", // Thread status memory keyword

init: init_func, // Name of function to run when initializing the thread

run: run_func, // Name of main_loop function

ibuf_desc: {input_buffer_create_func}, // Name of input buffer creation function

obuf_desc: {output_buffer_create_func} // Name of output buffer creation function

};
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After compilation, a shared library object (.la) is generated that represents this pipeline with its various
threads and semaphores. When the library is placed in a directory found in the LD LIBRARY PATH
environment variable, it can be executed using the following at a terminal:

$ hashpipe -p <library_name>

where <library name> is the shared library file name without its .la extension. To run multiple simultaneous
instances, one can use the -I <instance num> flag. Shared memory status values can be set using the
-o <KEY>=<value> flag. Lastly, core affinities for the various threads are set using the -c <core num>

<thread name> flag. For example,

$ hashpipe -p flag_beamformer -I 0 -o XID=0 -o BINDHOST=10.10.10.1 -o GPUDEV=0

-c 0 flag_net_thread -c 1 flag_transpose_thread -c 2 flag_beamformer_thread

A simple “Hello World” HASHPIPE plug-in can be found in Appendix A.

1.6 GPU Libraries

The hashpipe plugins use shared libraries that wrap GPU kernel methods.

1.6.1 xGPU

The correlator is based on the open-source GPU library xGPU hosted on GitHub [ref to github repo]. It is a
highly optimized code that parallelizes the correlator process by computing several two-by-two correlations
and accumulating. The number of antenna inputs must be a multiple of 32. The library is compiled to be
C compatible so that it can be linked to hashpipe. The output data structure is a block lower-triangular
matrix with two-by-two block matrices in row-major order. The block entries are ordered similarly.

There are three types of correlators that this library must support: (1) a coarse-channel correlator with
8-bit input samples, (2) a fine-channel correlator with floating-point input samples, and (3) a coarse-channel
rapid-dump, reduced-bandwidth correlator with 8-bit input samples. To accommodate these various modes,
multiple versions of the library are compiled. The xgpu.so library supports the coarse-channel correlator;
the xgpu pfb.so library supports the find-channel correlator; and the xgpu frb.so library supports the
rapid-dump correlator.

1.6.2 Total Power

The total power code computes the time-average power in the entire band on a per-element basis, or

Pm =
1

N

N−1∑
n=0

K−1∑
k=0

|xm,k[n]|2, (1)

where m is the element index, 0 ≤ m ≤M − 1, N is the total number of time samples in the integration, k
is the frequency channel index 0 ≤ k ≤ K − 1, and xm,k[n] is the mth element’s complex voltage in the kth
frequency channel at the nth time sample. For the FLAG back end, M = 64, K = 25 for each pipeline, and
N = 4000.

1.6.3 Beamformer

The beamformer computes seven dual-polarization beams across the entire bandwidth with a 40-sample
accumulation length resulting in 100 short time integration (STI) windows over 4000 samples. Formulaically,
this is

Pk,l,b,p,q =
1

N

N∑
n=0

wH
k,b,pxk[n + lN ]xH

k [n + lN ]wk,b,q, (2)
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Figure 6: Caption

where wk,b,p is the beamformer weight vector for the bth beam with polarization p and the kth coarse
frequency channel, and l is the STI index.

The weights are stored in a file that is read by the beamformer module, and is formatted as depicted in
Figure 6.

The beamformer output dimensions from fastest to slowest moving are beam, polarization, frequency
channel and STI index. The number of beams, frequency channels, STI indices/windows are left as stated
earlier, but there are 4 polarizations; the self polarizations (xx∗ and yy∗) and the cross polarizations (xy∗

and yx∗). This can be seen in equation 2.

1.6.4 Polyphase Filter Bank Channelization

In the fine channel correlator mode, only one-fifth of the 500 coarse frequency channels are processed for a
zoomed spectrum. Each Hashpipe instance implementing a PFB across the five HPCs is therefore specified
to process 5 coarse frequency channels for all 40 elements, using 4000 decimated time samples per data
window as input. This results in 5 (coarse channels) x 40 (antenna elements), or 200 decimated time series
that need to be independently filtered by a PFB.

Data parallelism allows us to collapse the need for 200 iterations of a PFB into one call to a PFB kernel
that runs all 200 iterations simultaneously. This is a powerful capability, because the number of decimated
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time series can scale and increase in dimension by either increasing the number of processed frequency bins,
or antenna elements and all time series are processed simultaneously, substantially decreasing computation
time. As long as there are sufficient GPU resources available to process all of the time series, the compute
response time is as if only one PFB is being called.

1.7 Implementation Details

In this section, we expand on the implementation details of the various libraries used in hashpipe. These
include xGPU, the total power library, the real-time beamformer library, and the polyphase fiter bank library.

1.7.1 xGPU

The library is compiled to be C compatible so that it can be linked to HASHPIPE. The xgpu.so library
supports the coarse-channel correlator; the xgpu pfb.so library supports the fine channel correlator; and
the xgpu frb.so library supports the rapid-dump correlator.

1.7.2 Total Power

The total power code uses several subsequent GPU kernels to fully reduce the data into element powers.
There are three reduction procedures:

1. Get power and reduce blocks of 1024 time samples

2. Reduce the results from each block in 1

3. Reduce the results from 2 across frequency channels

1.7.3 Beamformer

The real-time beamformer is implemented on a GPU similar to the total power code. The specifications for
the beamformer are as follows; 19 dipole elements, 25 coarse channels with 15MHz total bandwidth at a
sample rate of 303k samp/s, and 7 dual polarization beams. In order to achieve real-time, the total duration
of beamforming, and integration must be at most the number of samples (N) divided by the sample rate.
The two processes that utilized the GPU the most were beamforming and integration. A data restructure
was also processed by the GPU in order to accommodate for a function used by the beamformer. This
document describes the functions used to run the real-time beamformer. The code was structured in such a
way that it could be easily integrated into HASHPIPE.

The functions used as well as their descriptions are as follows;

init beamformer() - This function allocates memory to all the arrays used in the code. It also sets up
all the arrays used by the cublasCgemmBatched() function.

update weights(char * filename) - As the functions name implies, this function updates the weights, but
it also transposes the weights to accommodate for the cublasCgemmBatched() function. The file name of
the weights file is required as an input.

data restructure(signed char * data, cuComlplex * data restruc) - A kernel that restructures the data to
accommodate for the cublasCgemmBatched() function and replace the transpose thread in HASHPIPE. The
array of pointers, data, is required as an input of the kernel and data restruc is its output.

signed char * data in(char * input filename) - Reads the data file, and returns it as an array of point-
ers. The file name of the data file is required as an input.

void beamform() - Contains the cublasCgemmBatched() function that performs the beamforming opera-
tion. The cublasCgemmBatched() function is found in the cublas library and performs a matrix-matrix
multiplications of an array of matrices.
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Figure 7: The data as it is manipulated by the total power code.
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void sti reduction(cuComplex * data in, float * data out) - A kernel that performs the short time integra-
tion using a reduction algorithm commonly used on GPUs to reduce the number of threads per block. The
kernel requires the output of the beamform() function as its input, data in, and produces an output, data out.

void run beamformer(signed char * data in, float * data out) - This function calls the data restructure,
beamform and sti reduction functions. The returned value of data in() is required as its input, and its
output is the short time integration kernel’s output.

1.7.4 Polyphase Filter Bank

Pseudo-code for host PFB implementation:

1 void runPFB(char* dataIn_h, float2* dataOut_h, dim3 gridDim, dim3 blockDim)

2 // initialize local variables and flags

3

4 // copy data to device

5

6 // run PFB filtering kernel

7 PFB_kernel<<<gridDim, blockDim>>>(dataIn_d, FFTIn_d);

8 // perform FFT

9 while(!doneFFT)

10 doFFT();

11 countFFT++;

12 // update FFT data pointers

13

14 // check exit condition

15 if (countFFT > N_windows)

16 doneFFT = 1;

17

18

19 // copy data from device to host

20

21 return;

22

23

24 int main()

25 // initialize main variables and flags

26

27 //setup grid and block dimensions

28 dim3 gridDim(N_time_series, N_windows, 1);

29 dim3 blockDim(NFFT, 1, 1);

30 // initialize host and device memory

31

32 // run PFB

33 runPFB(dataIn_h, dataOut_h, gridDim, blockDim);

34 return 0;

35

1.8 HASHPIPE Threads

For each specified configuration, there is an associated HASHPIPE plugin, named as follows:

1. flag bx.la → Coarse Channel, Rapid Dump, Reduced Bandwidth Correlator/Coarse Beamformer

2. flag bfx.la → Fine Channel Correlator/Coarse Beamformer
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Figure 8: The HASHPIPE thread layout for the FLAG back end.

There are also other reduced capability configurations that are available for simple tests or diagnostics, which
are named:

1. flag x.la → Coarse PFB Correlator

2. flag x frb.la → Coarse PFB Rapid Dump, Reduced Bandwidth Correlator

3. flag b.la → Coarse Beamformer

4. flag f.la → Fine PFB

5. flag fx.la → Fine PFB Correlator

These HASHPIPE plugins use many threads, but they all align into roughly the same structure, shown
in Figure 8. In essence, the first thread must always be a network sniffing thread, which listens on the
network for packets from the ROACH boards. The second thread must always be a transpose thread, which
reformats the data so that all time samples are co-located in memory (details later). The next thread should
be selected based on desired operational mode, and the final thread is a save-to-disk thread for debugging
purposes. If the FITS writers are being used, the fourth thread should be omitted.

We here enumerate the threads used in each configuration:

The flag bx.la Mode

1. flag net thread

2. flag bx transpose thread

3. flag bx thread

4. (For Debugging) flag bx save thread

The flag bfx.la Mode

1. flag net thread

2. flag transpose thread

3. flag bfx thread

4. (For Debugging) flag bfx corsave thread

The flag x.la Mode

1. flag net thread

2. flag transpose thread
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3. flag correlator thread

4. (For Debugging) flag corsave thread

The flag x frb.la Mode

1. flag net thread

2. flag frb transpose thread

3. flag frb correlator thread

4. (For Debugging) flag frb corsave thread

The flag b.la Mode

1. flag net thread

2. flag transpose thread

3. flag beamform thread

4. (For Debugging) flag beamsave thread

The flag f.la Mode

1. flag net thread

2. flag transpose thread

3. flag pfb thread

4. (For Debugging) flag pfbsave thread

The flag fx.la Mode

1. flag net thread

2. flag transpose thread

3. flag pfb thread

4. flag pfb correlator thread

5. (For Debugging) flag pfb corsave thread

This section will review each thread and its functionality.

1.8.1 flag net thread

The flag net thread listens for incoming UDP packets from the ROACH boards and stores them in a buffer
for further processing. It also handles incoming messages from the Player and subsequently commands the
remaining threads in the process.

The internal processing structure is a state machine, which is depicted in Figure 9. Here, the thread
waits in an IDLE state until the Player issues a “start” command through stdin. Once the “start” command
is issued, the thread enters the ACQUIRE state in which it begins to listen for ROACH packets and stores any
that it finds. When it stores a block of data whose starting frame counter (mcnt) is greater than or equal to
the specified last frame counter (i.e. scan length), or when the Player issues a “stop” command, the thread
transitions into a CLEANUP state. In CLEANUP, the thread issues the same command through shared memory
to the other threads and reinitializes the input buffer and all relevant counters to prepare for a new scan.
Then the thread returns to IDLE to wait for a new “start” command.

Since the full-data-rate system sends packets through a network switch, out-of-order packets are very
common. Consequently this thread incorporates a large output buffer with many blocks, where each block
contains 200 packets worth of data, which translates to 4000 complex time samples of 25 frequency channels
across 64 antenna elements. The data are ordered in the buffer according to the diagram shown in Figure 10.
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Figure 9: State machine used in net thread.

Figure 10: The data coming out of the flag net thread are ordered such each block contains 200 frames,
which each contain eight ROACH packets. Each packet contains 20 time samples of 25 frequency channels
across eight antenna elements.
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Figure 11: State machine used in other threads.

Figure 12: The data format coming out of the flag transpose thread. Each block contains 4000 time
samples of 25 frequency channels across 64 antenna elements.

1.8.2 flag transpose thread

Unlike from flag net thread, this thread uses a much simpler state machine, depicted in Figure 11. Here,
the thread resides in an ACQUIRE state in which it waits for the input buffer to become populated and
reformats the data so as to aggregate the time samples together as depicted in Figure 12. When the
flag net thread goes into a CLEANUP state, this thread also enters a CLEANUP state in which it resets all
relevant counters.

1.8.3 flag pfb transpose thread

As with the flag transpose thread, this thread uses the same state machine depicted in Figure 11. The
operation of the this thread is the same as that of flag transpose thread except that the output consists
of only five of the total 25 frequency channels. One can control which five frequency channels are processed
by writing a value to the shared memory status keyword CHANSEL, where a value of k, 0 ≤ k ≤ 4 yields
channels 5k through 5k + 4. These outputs are then marked as ready for the flag frb correlator thread

to process.

1.8.4 flag frb transpose thread

As with the flag transpose thread, this thread uses the same state machine depicted in Figure 11. The
operation of the this thread is the same as its non-FRB counterpart above except that the output consists
of only five of the total 25 frequency channels and is split into 200 blocks per one input block. This creates
output blocks that span 40 time samples, or approximately 0.13 milliseconds. One can control which five
frequency channels are processed by writing a value to the shared memory status keyword CHANSEL, where
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a value of k, 0 ≤ k ≤ 4 yields channels 5k through 5k + 4. These outputs are then marked as ready for the
flag frb correlator thread to process.

1.8.5 flag bx transpose thread

As with the other transpose threads previously described, this thread uses the same state machine depicted
in Figure 11. This thread sources two output buffers, the first for the real-time beamformer operation
and the second for the fast-dump, reduced-bandwidth correlator managed by the flag bx thread. The
beamformer’s buffer is organized as described in Section 1.8.2, and the correlator’s buffer is organized as
described in Section 1.8.4

1.8.6 flag pfb thread

This thread accesses the 8-bit data outputeed by the flag pfb transpose thread and calls the PFB GPU codes
to further channelize the data. The user can specify before run-time the filter length and window type by
using other utilities found with the PFB library. Details about the PFB library are beyond the scope of this
work and can be found in Mitchell Burnett’s thesis.

1.8.7 flag correlator thread

This thread accesses the 8-bit data output by the flag transpose thread and calls the xGPU process
that will correlate the data. The user can specify an integration length by writing the desired number of
seconds to the REQSTI value of the status shared memory. The integration length must be a multiple of
4000 time samples, or approximately 13 ms, so the code rounds up to the nearest multiple of 4000 time
samples. As with the flag bx transpose thread, this thread uses the state machine depicted in Figure 11.
The correlation matrix format has the same structure depicted in Figure 13.

1.8.8 flag frb correlator thread

This thread accesses a single block from the buffer populated by the flag frb transpose thread and calls
the xGPU process that will correlate the data. In this thread, the xGPU process is linked to the xgpu frb.so

library, which supports only five frequency channels and processes blocks of 40 time samples. As with the
flag correlator thread, the output data format is depicted in Figure 13.

1.8.9 flag pfb correlator thread

This thread computes spatial correlation matrices for 160 fine frequency channels provided by the flag pfb thread.
Here, the xGPU process is linked to the xgpu pfb.so library, which expects floating point complex values
for 160 frequency channels in 4000-time-sample blocks. As with the other correlator threads, the output
data format is given by the format in Figure 13.

1.8.10 flag beamform thread

This thread accesses the data output by the flag transpose thread and processes it using the real-time
beamformer GPU kernel. To this end, it manages the beamformer weights and populates shared memory
with relevant metadata, which is itemized in Table 5. The thread also uses the state machine from Figure 11.
The output data product format is a three-dimensional array with dimensions of 25×4×7 (frequency channel
× polarization × beam index), where beam index is the fastest changing dimension followed by polarization
(XX → Y Y → XY ).

1.8.11 flag bx thread

This thread creates two sub-threads of its own: the first implements the real-time fast-dump correlator as
used in the flag frb correlator thread, and the second implements the real-time beamformer as used
in the flag beamform thread. To accommodate the different output data products, two data buffers are
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Figure 13: The data format coming out of the flag correlator thread.

Table 5: Real-Time Beamformer Metadata
Keyword Description
ELOFFX The elevation offset for beam number X (arcminutes)
AZOFFX The azimuth offset for beam number X (arcminutes)
BCALFILE The beamformer calibration data set file name
BALGORIT The algorithm used in computing the beamformer weights
BWEIFILE The beamformer weight file name
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created, the first being the default associated with the thread and the second created manually before the
two sub-threads are created. The two sub-threads independently use the state machine from Figure 11.

1.8.12 flag bfx thread

This thread is not yet implemented, but is meant to take data from the flag transpose thread and apply the
real-time beamformer, fine-channelization PFB, and correlator in parallel on the data. This single thread
approach being developed by Jeff Nybo, an M.S. student at BYU.

1.8.13 flag corsave thread

This optional thread must follow the flag correlator thread. It saves the correlator outputs defined
in Figure 13 across 20 frequency channels into a raw text format, with each new line containing a single
floating-point sample. Every other sample is real, and the remaining samples are imaginary.

1.8.14 flag frb corsave thread

This optional thread must follow the flag frb correlator thread. It saves the short-time dumps of the
correlator formatted according to Figure 13 across five fine frequency channels into a raw text format, with
each new line containing a single floating-point sample. Every other sample is real, and the remaining
samples are imaginary.

1.8.15 flag pfbsave thread

This optional thread must follow the flag pfb thread. It saves the PFB channels into a raw text format,
with each new line containing a single floating-point sample. Every other sample is real, and the remaining
samples are imaginary. The exact format of the data is beyond the scope of this work and can be found in
Mitchell Burnett’s thesis.

1.8.16 flag pfb corsave thread

This optional thread must follow the flag pfb correlator thread. It saves the correlator outputs defined
in Figure 13 across 160 frequency channels into a raw text format, with each new line containing a single
floating-point sample. Every other sample is real, and the remaining samples are imaginary.

1.8.17 flag beamsave thread

This optional thread must follow the flag beamform thread. It saves the beamformer outputs defined in
Figure 13 into a binary file consisting of only float pairs, each representing a complex sample.

1.8.18 flag bx save thread

This optional thread must follow the flag bx thread. It creates two sub-threads that emulate the behavior
of the flag frb corsave thread and flag beamsave thread codes.

1.8.19 flag bfx save thread

This optional thread must follow the flag bfx thread. It creates two sub-threads that emulate the behavior
of the flag pfb corsave thread and flag beamsave thread codes.

1.9 Dealer/Player Implementation Details

The Dealer/Player system is a Python-based code suite that manages ROACH boards and HPC processes
and provides mechanisms to issue user commands and control shared memory. Detailed documentation for
the Dealer/Player system can be found at [1]. In summary, a “Dealer” acts as a server, issuing commands
to its “Players” or clients via zero-MQ socket protocols.
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The FLAG back end system has a single Dealer that communicates with 20 Players that each manage a
single instance of our HASHPIPE code and FITS writer. A single Player is shown in Figure 14. Here the
Dealer issues commands to the Player, which in turn translates that command into messages that are then
fed into the stdin of the HASHPIPE and FITS writer processes.

The Dealer/Player interface is controlled by a configuration file named dibas.conf, which outlines the
parameters for each Player instance, known as BANKs, and the various operational modes that the Player
can turn on. An example of a BANK configuration is shown below:

[BANKA]

# HPC / Player host & port

hpchost = flag4

player_port = 6677

# ROACH Control:

has_roach = true

katcp_ip = byur2

katcp_port = 7147

# Data flow

data_source_host = byur2

data_source_port = 60000

data_destination_host = 10.10.1.13

data_destination_port = 60000

# Synthesizer:

synth = none

# I’m pretty sure these don’t matter if katcp is set as the synthesizer

synth_port = /dev/ttyS1

synth_ref = external

synth_ref_freq = 10000000

synth_vco_range = 2200, 4400
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Table 6: FLAG Back End Operational Mode Table
Mode MODENAME Description
FLAG HICORR MODE hi correlator Fine channel real-time correlator
FLAG CALCORR MODE cal correlator Coarse channel real-time correlator for PAF calibration
FLAG FRBCORR MODE frb correlator Coarse channel rapid-dump real-time correlator
FLAG RTBF MODE pulsar correlator Real-time standalone beamformer
FLAG PFB MODE flag pfb mode Fine polyphase filter bank channelizer
FLAG PFBCORR MODE flag pfbcorr mode Fine polyphase filter bank channelizer + fine channel correlator
FLAG BX MODE flag bx mode Coarse-channel, rapid-dump correlator + real-time beamformer
FLAG BFX MODE flag bfx mode Fine-channel correlator + real-time beamformer

synth_rf_level = 5

synth_options = 0,0,1,0

# I2C (nonsense for FLAG)

filter_bandwidth_bits = 450, 0x00, 1450, 0x08, 1900, 0x18

# FLAG-specific parameters

xid = 12

instance = 0

gpudev = 0

cpus = 0, 1, 2, 3

An example configuration for a mode named FLAG HICORR MODE is shown below:

[FLAG_HICORR_MODE]

# These values get loaded directly into status shared memory

shmkeys = BACKEND,MODENAME

BACKEND = FLAG

MODENAME = hi_correlator

hpc_program=hashpipe

hpc_program_flags=-p flag_gpu

fits_process = bfFitsWriter

# IP and MAC Addresses

fabric_port = 60000

bof_file = flag_sim3_v1.bof

arm_phase = sync_gen_msync_in,0x0,sync_gen_msync_in,0x1,sync_gen_msync_in,0x0

# These are currently mandatory values

hwexposr = 0.000500395

filter_bw = 1450

frequency = 1500

nchan = 1024

hpc_fifo_name = /tmp/wouldntyouliketoknow.fifo

needed_arm_delay = 2

gigabit_interface_name = 10.2.118.123

dest_ip_register_name = bart

dest_port_register_name = lisa

master_slave_sel = 0,0,0,0,0,0

A list of all the modes that the FLAG back end supports are shown in Table 6.
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1.10 Scan Overlord

The Scan Overlord is a Python script that monitors the state of the Green Bank Telescope scan coordinator
and issues commands to the Dealer. Communication with the scan coordinator is accomplished by creating
a map of desired values to observe and the respective callback functions that should be called. For example,
the key to get the scan coordinator state is ScanCoordinator.ScanCoordinator:P:state. We can then
assign a callback function to run whenever that scan coordinator state changes, so that

keys = {"ScanCoordinator.ScanCoordinator:P:state": state_callback},

where the method state callback is called when the state changes.
Before proceeding, the following include statements will be needed:

import dealer

from ZMQJSONProxy import ZMQJSONProxyException

import zmq

import sys

from PBDataDescriptor_pb2 import PBDataField

from DataStreamUtils import get_service_endpoints

from DataStreamUtils import get_every_parameter

from datetime import datetime, tzinfo, date, time

To connect to the scan coordinator, one must be listening on a socket, which is done as follows:

req_url = "tcp://gbtdata.gbt.nrao:5559"

ctx = zmq.Context()

subscriber = ctx.socket(zmq.SUB)

This creates a ZMQ subscriber socket listening to the ScanCoordinator. One can then receive all
messages from the ScanCoordinator by setting the socket filter option to an empty string.

subscriber.setsockopt(zmq.SUBSCRIBE, ’’)

In our case, we are interested in only some messages, which are specified by the key values from
the keys dictionary, and the socket filters can be incorporated as follows:

for key in keys:

major, minor = key.split(’:’)[0].split(’.’)

sub_url, _, _ = get_service_endpoints(ctx, req_url, major, minor, 0)

subscriber.connect(sub_url)

subscriber.setsockopt(zmq.SUBSCRIBE, key)

Then one must start a main loop that constantly listens for messages from the scan coordinator, as follows:

while (auto_set):

key, payload = subscriber.recv_multipart()

df = PBDataField() # Create a message parser/decoder

df.ParseFromString(payload) # Parse the string message into a struct

f = keys[key] # Get the callback function name for the message

f(df) # Call the callback function

Note that PBDataField is a Google Developer library, where “PB” stands for “Protocol Buffer.” This library
contains a string-parsing code that converts the received message into a struct.

This struct is the single argument of the respective callback function. For example, the struct received
by state callback contains a list of structures called val struct, whose first entry contains a list of strings
called val string. Thus, one can print the current state using the following callback function:
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def state_callback(p):

print p.val_struct[0].val_string[0]

Currently, there are only four callback functions are in place, resulting in the key-callback map of

keys = {"ScanCoordinator.ScanCoordinator:P:state": state_callback,

"ScanCoordinator.ScanCoordinator:P:startTime": start_time_callback,

"ScanCoordinator.ScanCoordinator:P:scanLength": scan_len_callback,

"ScanCoordinator.ScanCoordinator:P:projectId": project_id_callback}

The other callback functions can access the data as shown below:

def start_time_callback(p):

num_sec = p.val_struct[0].val_struct[0].val_double[0]

def scan_len_callback(p):

scan_length = p.val_struct[0].val_struct[0].val_double[0]

def project_id_callback(p):

project_id = p.val_struct[0].val_string[0]

1.11 Dealer/player GUI

A GUI has been created and tested in the outdoor test facility (OTF) at GBO. This GUI is located in
/home/groups/flag/dibas/versions/stableGUI/lib/python or under the versions/stableGUI/lib/python in
the git repository and the file is called one punch gui.py. It has been created to simplify dealer/player
control and has the same functionality described in the previous subsection, but operated from a GUI.

1.12 Commissioning Notes

1.12.1 Bus Address

In order to minimize cross-bus traffic, we must know the bus addresses for the NUMA nodes (CPU cores),
GPU cards, and ethernet interfaces.

NUMA Nodes
To locate the NUMA node bus addresses, run the following code:

$ dmesg | grep "NUMA node"

GPU Cards
To locate the GPU card bus addresses, run the following code, where $CUDADIR is nominally /usr/local/cuda:

$ $CUDADIR/samples/1_Utilities/deviceQuery/deviceQuery

Ethernet Interfaces
To locate the bus addresses for the ethernet interfaces, run the following code:

$ sudo lshw -class network -businfo

1.13 MATLAB Post-Processing Codes

A suite of post-processing codes for the FLAG receiver were developed and are saved in the remote GIT
repository located at

https://gitlab.ras.byu.edu/ras-devel/matlab-post-processing

There are six sub-directories:

https://gitlab.ras.byu.edu/ras-devel/matlab-post-processing
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• kernel

• sensitivity maps

• patterns

• tsys plots

• word lock

• misc

Each subsection that follows will explore the codes in each sub-directory mentioned above.

1.13.1 kernel

The codes located in the kernel sub-directory are functions and scripts that are called by scripts in the other
sub-directories. These include scripts that will (1) open FITS files and parse the data into a MATLAB-
friendly format, (2) extract antenna position information from ancillary FITS files, and (3) tabulate scan
metadata from scan logs.

• extract covariances This function opens a FITS file containing correlations from the coarse-channel
correlator and reconstructs the correlation matrix. It then returns the restructured matrix, the corre-
sponding DMJD, XID, and FITS header information. The function declaration is as follows:

function [ R, dmjd, xid, info ] = extract covariances( fits filename )

A note to users and developers: this function is not fast since file I/O in MATLAB is slow. It is
possible that some micro optimization could speed this method up.

• extract pfb covariances This function performs the same operations as in extract covariances

except that it is expecting correlations from the fine-channel correlator. The function declaration is as
follows:

function [ R, dmjd, xid, info ] = extract pfb covariances( fits filename )

• extract bf output This function opens a FITS file containing beamformed powers from the real-
time beamformer and reconstructs the data into a matrix with dimensions (Beams × Polarization ×
Frequency × Time). The function is a little quirky since the default MATLAB FITS file reader crashes
with large file sizes, and so care must be taken when using this. The function declaration is as follows:

function [ B, xid ] = extract bf output( fits filename )

• aggregate banks This function collects the correlations from every BANK and the corresponding
antenna positions, and aggregates them. The correlations are averaged in time based on user input,
and the method also linearly interpolates the antenna positions to align with the DMJDs corresponding
to the correlations. It then returns the resulting correlation matrix, interpolated offset angles, FITS
file meta data, raw offset angles, raw DMJD values, and DMJD values corresponding to the integrated
correlations. The function declaration is as follows:

function [ R, my az, my el, info, az off, el off, dmjd, dec dmjd ] = aggregate banks( save dir,

ant dir, tstamp, on off, Nint )

One must specify a directory in which to save the resulting aggregated correlations and positions by
setting save dir to the desired directory. The directory that contains the antenna FITS files must
also be specified by ant dir. The time stamp (formatted as “yyyy mm dd hh:mm:ss”) for the scan to
aggregate must also be provided in tstamp. The on off argument is deprecated, but should be set to
1 until downstream code is refactored. Lastly, one specifies the number of correlations per integration
by setting Nint. If Nint is set to -1, all correlations in the scan are averaged.
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• aggregate banks pfb This function does the same thing as aggregate banks except that it expects
fine-channel data from the fine-channel correlator. The function declaration is as follows:

function [ R, my az, my el, info ] = aggregate banks pfb( save dir, ant dir, tstamp, Nint

)

• aggregate banks rb hack This function does the same thing as aggregate banks except that it
only aggregates data for a single frequency channel. This should only be used when wanting to get a
quick look at, say, a sensitivity map for a single frequency bin. The function declaration is as follows:

function [ R, my az, my el, info ] = aggregate banks rb hack( save dir, ant dir, tstamp,

on off, Nint )

• aggregate single bank This function does the same thing as aggregate banks except that it only
aggregates data for a single BANK. This was done so as to minimize memory usage when processing
long scans such as a Daisy scan. The function declaration is as follows:

function [ R, my az, my el, xid, info ] = aggregate single bank( save dir, ant dir, tstamp,

bank, Nint )

• get antenna positions This function reads an antenna FITS file and extracts the antenna positions.
It also returns the DMJD values corresponding to the antenna positions and the RA/DEC angles. The
function declaration is as follows:

function [ dmjd, az off, el off, ra, dec ] = get antenna positions( fits file, on off, use radec

)

The argument on off is deprecated and should always be 1. The argument use radec returns the
RA/DEC angles as if they were the azimuth and elevation offset angles.

• scan table This is a script that contains information about each observation session. For example, a
table relating the scan numbers with time stamps is generated, and element mappings (i.e., correlation
entries to dipole number) are provided. Any dipoles that have failed or frequency channels that were
lost are specified here as well. A new entry in the scan table should be created for each observation
session.

• source table This is a script that contains information about calibration sources. Each entry is a
struct that contains the source name and constants that are used to derive the source’s flux density
across frequency.

• stitch pfb This is a quick-and-dirty script that reads in some fine-channel correlations and generates
a quick spectrum.

• create weight file This function takes beam angles and weight values and generates a weight file.
The function declaration is as follows:

function create weight file(az, el, wX, wY, cal filename, X idx, Y idx, filename)

To use this function, one must also specify the mappings from dipoles to correlation matrix entry in
X idx and Y idx.

• compute delay This function estimates the delay between antenna signal paths by examining the
phase structure across frequency. This was primarily used to evaluate the effectiveness of our timing
alignment algorithm known as “word lock.” The function declaration is as follows:

function [ delta n, residual ] = compute delay(R, faxis, fs, ref el)

One must specify the sample rate (fs), center frequencies for each bin (faxis), and to which element
the delays will be relative (ref el, correlation diagonal index). It then returns the sample offsets in
delta n and the residual error from the linear regression in residual. Note: this function would likely
be better placed in the word lock directory.
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1.13.2 sensitivity maps

This sub-directory contains scripts and functions that generate sensitivity maps, trajectory plots, and cali-
brated steering vectors and beamformer weights.

• plot trajectories This script extracts the antenna positions for a series of scans and plots the trajec-
tory traversed by the telescope during those scans. One can also specify “off” or reference scans that
are plotted with “x” markers.

• sensitivity map This script computes the formed beam sensitivity for a series of scans in an obser-
vation session and plots them as a map. One must specify which session is being processed, the scan
numbers for each of the on-source scans and reference (“off”) scans. One may also specify a note string
that will differentiate the resulting calibration steering vectors and weight file names from other grids
in the same observation session. The source must also be specified using one of the defined structs
in source table, and the number of correlation matrices to average per grid point. For example, if
the correlations were saved with 0.1 second resolution, and the desired resolution of the grid is one
second, Nint should be set to 10. The script will then save the resulting calibrated steering vectors,
maximum-SNR beamformer weights, and measured Tsys/eta values for each grid point. These files are
then used when generating real-time beamformer weight files, pattern plots, and calibrated HI spectra.

• sensitivity daisy This script does the same things as sensitivity map except that it processes each
BANK separately. All but the normalized system temperatures are then saved.

1.13.3 patterns

This sub-directory contains scripts and functions that generate beam or element patterns or assist with said
generation.

• get beamformed patterns This method computes beam patterns using the calibrated steering vec-
tors for a specified observation session, polarization, and set of weights. It then returns the pattern
azimuth and elevation angles and pattern values. The function declaration is as follows:

function [AZ, EL, patterns] = get beamformed patterns(session, pol, note, w)

Note: the note argument is used to distinguish between calibration sets from the same session, and is
specified in sensitivity map.

• get element patterns This is a script that plots element patterns for a specified session and polar-
ization. This should eventually be converted into a function.

• get grid steering vectors This function loads in the saved calibrated steering vectors generated
when running sensitivity map and returns the vectors closest to the specified azimuth and elevation
offset angles. It also returns the angles corresponding to the return steering vectors and the measured
normalized system temperature at those angles. The function declaration is as follows:

function [a, a az, a el, Tsys] = get grid steering vectors(session, pol, note, beam az,

beam el)

• get grid weights This function loads in the saved maximum-SNR beamformer weights generated
when running sensitivity map and returns the weights for beams pointing in the user-specified di-
rections. It also returns the beam pointing angle corresponding to the returned weight vectors. The
function declaration is as follows:

function [w, w az, w el] = get grid weights(session, pol, beam az, beam el, note)

• plot beam patterns This script will plot beam patterns for seven beams using weights and steering
vectors generated from the same observation session’s calibration grid. It also generates a binary weight
file that can be used in the real-time beamformer.
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• plot hex This function plots the beam patterns for a given observation session and set of beamformer
weights in a hexagonal pattern. It then returns a handle to the generated figure. The function
declaration is as follows:

function map fig = plot hex(session, AZ, EL, patterns)

• plot lcmv patterns This script generates linearly constrained minimum variance beamformer weights
with several null constraints and plots the resulting patterns for the standard seven beam layout. It
also generates a binary weight file that can be used in the real-time beamformer.

• RTBF data analysis Script that quickly looks at the total beamformed power in a time/frequency
window. Currently this script is incorrectly placed in this sub-directory and would be better suited for
misc.

1.13.4 tsys plots

This sub-directory contains scripts and functions relating to generating system noise temperature spectra.

• onoff table This script tabulates pairs of on/off source scans. One must specify which session the
scans are from, the scan numbers for the two scans, the source struct from scan table, and the LO
frequency (Hz). This is then used in other scripts in this directory.

• get onoff tsys This function computes the normalized system temperature as a function of frequency
for a given pair of on/off scans. One must specify the session struct from scan table, the on/off scan
numbers, the source struct from scan table, and the LO frequency (Hz). The function declaration is
as follows:

function [Tsys etaX, Tsys etaY, freqs, wX, wY] = get onoff tsys(session, on scan, off scan,

source, LO freq)

The function returns the system temperatures for both polarization, the center frequencies for each
frequency bin, and (for convenience) the maximum-SNR beamformer weights for a beam pointing in
the direction of the on source.

• plot broad tsys This script compiles the system noise temperatures for a set of on/off pairs acquired
with different LO frequencies and plots a broad spectrum. One must specify the session struct, the
scan pairs, and the desired polarization.

• run all onoff This script gets the normalized system noise temperature for each pair of on/off scans
specified in onoff table. This is a useful script when trying to batch the aggregation process for every
pair of on/off scans.

1.13.5 word lock

This sub-directory contains scripts and functions relating to the “word lock” procedure, which attempts to
time-align the element signal paths.

• snoop lock This script reads in a coarse-channel correlation FITS file when observing noise from the
noise source (i.e., the noise is coherent across elements) and estimates the sample offsets between the
various paths through a phase ramp analysis. The resulting sample offsets are then written to a file to
be read later and applied in ROACH boards.

• word lock This script does the same thing as snoop lock except that it instead expects a series of
FITS files that were acquired when observing a test tone at different frequencies.

• compare lock This script evaluates the signal path time alignment after the sample offsets resulting
from snoop lock have been applied to the ROACH boards. One must specify which reference element
was used in snoop lock by changing ref el.
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1.13.6 misc

This sub-directory is meant to hold any quick-and-dirty scripts/functions that do not naturally fall into any
of the other directories. At the time of this writing, there was only one script in this directory.

• peak This script reads in a single scan’s worth of data corresponding to a PEAK scan, in which
the telescope drifts across a bright point source. It then plots the total power in the first element
(correlation diagonal entry 0) in a single BANK against the reported antenna position to evaluate
pointing alignment.

A HASHPIPE Hello World Plugin

All of the following codes can be found at https://github.com/rallenblack/hashpipe samples.git.

A.1 hw databuf.h

This code outlines the specifications for the inter-thread buffer.

#ifndef _HW_DATABUF_H

#define _HW_DATABUF_H

#include "hashpipe_databuf.h"

/* Hello World for hashpipe!

* Author: Richard Black

* Date: Jan. 11, 2017

*

* Processing structure

* ======================================

* hw_thread1 -> hw_buffer1 -> hw_thread2

* ======================================

*

* thread1 will put the letters "HELLO WORLD!" into buffer1.

* thread2 will read buffer1 and print out contents

*

* This header file explains how the buffer is to be structured.

*/

// Macros to maintain cache alignment

#define CACHE_ALIGNMENT (128)

typedef uint8_t hashpipe_databuf_cache_alignment[

CACHE_ALIGNMENT - (sizeof(hashpipe_databuf_t)%CACHE_ALIGNMENT)

];

// Number of blocks in the first buffer

#define N_BLOCKS1 5

// Create block header struct

typedef struct hw_buffer1_header

int block_number; // We’ll keep track of how many blocks we’ve processed

hw_buffer1_header_t;

// Create dummy structure to make header size a multiple of CACHE_ALIGNMENT
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typedef uint8_t hw_buffer1_cache_alignment[

CACHE_ALIGNMENT - (sizeof(hw_buffer1_header_t)%CACHE_ALIGNMENT)

];

// Create the actual block struct

typedef struct hw_buffer1_block

hw_buffer1_header_t header; // Put the header in the block

hw_buffer1_cache_alignment padding; // Force data to be aligned

char data[4]; // Three characters per block

hw_buffer1_block_t;

// Create the full buffer

typedef struct hw_buffer1_databuf

hashpipe_databuf_t header; // All hashpipe buffers must have this header

hashpipe_databuf_cache_alignment padding; // Force buffer to be aligned

hw_buffer1_block_t block[N_BLOCKS1];

hw_buffer1_databuf_t;

/**********************************************

* Create buffer control method prototypes

* (Definitions in hw_databuf.c)

**********************************************/

/*

* hw_buffer1_databuf_create

* Creates an hw_buffer1_databuf_t hashpipe-compatible buffer

*

* @arg int instance_id

* The hashpipe instance id (set by -I on the command line)

* @arg int databuf_id

* The buffer’s id -- typically set by hashpipe during startup

* @return hashpipe_databuf_t *

* A pointer to the newly created hashpipe-compatible buffer

*/

hashpipe_databuf_t * hw_buffer1_databuf_create(int instance_id, int databuf_id);

/*

* hw_buffer1_databuf_wait_free

* Blocking function to wait for a block in the buffer to be marked as processed

* @arg hw_buffer1_databuf_t * d

* A pointer to the buffer

* @arg int block_id

* The block index to wait for

*/

int hw_buffer1_databuf_wait_free(hw_buffer1_databuf_t * d, int block_id);

/*

* hw_buffer1_databuf_wait_filled

* Blocking function to wait for block to be marked as ready for processing

* @arg hw_buffer1_databuf_t * d

* A pointer to the buffer

* @arg int block_id

* The block index to wait for
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*/

int hw_buffer1_databuf_wait_filled(hw_buffer1_databuf_t * d, int block_id);

/*

* hw_buffer1_databuf_set_free

* Function to mark block as having been processed

* @arg hw_buffer1_databuf_t * d

* A pointer to the buffer

* @arg int block_id

* The block index to free

*/

int hw_buffer1_databuf_set_free(hw_buffer1_databuf_t * d, int block_id);

/*

* hw_buffer1_databuf_set_filled

* Function to mark block as ready for processing

* @arg hw_buffer1_databuf_t * d

* A pointer to the buffer

* @arg int block_id

* The block index to mark as filled

*/

int hw_buffer1_databuf_set_filled(hw_buffer1_databuf_t * d, int block_id);

#endif

A.2 hw databuf.c

This code defines the methods that were prototyped in hw databuf.h.

#include "hw_databuf.h"

hashpipe_databuf_t * hw_buffer1_databuf_create(int instance_id, int databuf_id)

size_t header_size = sizeof(hashpipe_databuf_t) + sizeof(hashpipe_databuf_cache_alignment);

size_t block_size = sizeof(hw_buffer1_block_t);

int n_block = N_BLOCKS1;

return hashpipe_databuf_create(

instance_id, databuf_id, header_size, block_size, n_block);

int hw_buffer1_databuf_wait_free(hw_buffer1_databuf_t * d, int block_id)

return hashpipe_databuf_wait_free((hashpipe_databuf_t *)d, block_id);

int hw_buffer1_databuf_wait_filled(hw_buffer1_databuf_t * d, int block_id)

return hashpipe_databuf_wait_filled((hashpipe_databuf_t *)d, block_id);

int hw_buffer1_databuf_set_free(hw_buffer1_databuf_t * d, int block_id)

return hashpipe_databuf_set_free((hashpipe_databuf_t *)d, block_id);

int hw_buffer1_databuf_set_filled(hw_buffer1_databuf_t * d, int block_id)

return hashpipe_databuf_set_filled((hashpipe_databuf_t *)d, block_id);
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A.3 hw thread1.c

This code defines the first thread in the plugin.

#include <pthread.h>

#include <string.h>

#include "hashpipe.h"

#include "hw_databuf.h"

/*****************************************************

* hw_thread1.c

* Author: Richard Black

* Date: January 12, 2017

*

* This thread creates the string "HELLO WORLD!" and

* passes that string 3 characters at a time to

* hw_thread2 through the hw_buffer1_databuf_t buffer.

*****************************************************/

// Run method for the thread

static void * run(hashpipe_thread_args_t * args)

// Create a local pointer to the output buffer

hw_buffer1_databuf_t * db_out = (hw_buffer1_databuf_t *)args->obuf;

// Get access to status shared memory key/values

hashpipe_status_t st = args->st;

// Create string to print in the other thread

const char test_word[13] = "HELLO WORLD!\0";

// Create string counter

int str_idx = 0;

// Create block index tracker

int block_idx = 0;

// Create iteration counter

int iter_count = 0;

// Execute the main loop of the thread

int rv;

while (run_threads())

// Wait for the buffer block to be available for writing

while ((rv=hw_buffer1_databuf_wait_free(db_out, block_idx)) != HASHPIPE_OK)

// If we time out, print "waiting" to status keyword "THREAD1"

hashpipe_status_lock_safe(&st); // Gives us exclusive access to shared memory

hputs(st.buf, "THREAD1", "waiting"); // Put string "waiting" with key "THREAD1"

hashpipe_status_unlock_safe(&st); // Releases our exclusive access
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// Once we get here, we have a ready-for-writing block in the buffer

// Copy part of the string to the buffer

strncpy(db_out->block[block_idx].data, test_word + (str_idx % 12), 3);

// Update the string pointer

str_idx += 3;

// Write the loop counter

db_out->block[block_idx].header.block_number = iter_count;

// Only do this 20 times

if (iter_count < 20)

// Update the loop counter

iter_count++;

// Mark block as filled so next thread can process the data

hw_buffer1_databuf_set_filled(db_out, block_idx);

// Update the block index

// We use the % operator to make the block_idx circle back

block_idx = (block_idx + 1) % N_BLOCKS1;

else

hashpipe_status_lock_safe(&st);

hputs(st.buf, "THREAD1", "Done!");

hashpipe_status_unlock_safe(&st);

// Check to see if hashpipe is closing

pthread_testcancel();

return NULL;

// Thread description for hashpipe

static hashpipe_thread_desc_t hw_thread1 =

name: "hw_thread1", // The name of the thread for the command line

skey: "STAT1", // A shared memory keyword for thread status msgs

init: NULL, // The name of the initialization function (NULL if none)

run: run, // The name of the main loop function

ibuf_desc: NULL, // The buffer creation method name for the input buffer (NULL if none)

obuf_desc: hw_buffer1_databuf_create // The buffer creation name for the output buffer (NULL if none)

;

// Hashpipe calls this method to enable this thread

static __attribute__((constructor)) void ctor()

register_hashpipe_thread(&hw_thread1);
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A.4 hw thread2.c

This code defines the second thread in the plugin.

#include <pthread.h>

#include <string.h>

#include "hashpipe.h"

#include "hw_databuf.h"

/*****************************************************

* hw_thread2.c

* Author: Richard Black

* Date: January 12, 2017

*

* This threads waits for data to become available in

* the hw_buffer1_databuf_t buffer. It then prints

* out the contents of the buffer, which should be

* three characters of the string "HELLO WORLD!"

*

* Expected output:

* -----------------

* 0: HEL

* 1: LO

* 2: WOR

* 3: LD!

* 4: HEL

* 5: LO

* 6: WOR

* 7: LD!

* ...

* 19: LD!

* -----------------

*****************************************************/

// Run method for the thread

static void * run(hashpipe_thread_args_t * args)

// Create a local pointer to the input buffer

hw_buffer1_databuf_t * db_in = (hw_buffer1_databuf_t *)args->ibuf;

// Get access to status shared memory key/values

hashpipe_status_t st = args->st;

// Create placeholder for incoming data

char new_chars[4];

// Create iteration count placeholder

int iter_count = -1;

// Create block index tracker

int block_idx = 0;

// Execute the main loop of the thread

int rv;
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while (run_threads())

// Wait for the buffer block to be available for writing

while ((rv=hw_buffer1_databuf_wait_filled(db_in, block_idx)) != HASHPIPE_OK)

// If we time out, print "waiting" to status keyword "THREAD1"

hashpipe_status_lock_safe(&st); // Gives us exclusive access to shared memory

hputs(st.buf, "THREAD2", "waiting"); // Put string "waiting" with key "THREAD1"

hashpipe_status_unlock_safe(&st); // Releases our exclusive access

pthread_testcancel(); // Check if process is ending

// Once we get here, we have a ready-for-processing block in the buffer

// Copy buffer contents to local memory

strncpy(new_chars, db_in->block[block_idx].data, 3);

new_chars[3] = ’\0’;

// Get the iteration count

iter_count = db_in->block[block_idx].header.block_number;

// Print the string to the console

printf("%d: %s\n", iter_count, new_chars);

// Mark block as free so it can get new data

hw_buffer1_databuf_set_free(db_in, block_idx);

// Update the block index

block_idx = (block_idx + 1) % N_BLOCKS1;

// Check to see if hashpipe is closing

pthread_testcancel();

return NULL;

// Thread description for hashpipe

static hashpipe_thread_desc_t hw_thread2 =

name: "hw_thread2",

skey: "STAT2",

init: NULL,

run: run,

ibuf_desc: hw_buffer1_databuf_create,

obuf_desc: NULL

;

static __attribute__((constructor)) void ctor()

register_hashpipe_thread(&hw_thread2);
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A.5 Makefile.am

This is the required Makefile template needed for automake.

ACLOCAL_AMFLAGS = -I m4

AM_CPPFLAGS =

AM_CPPFLAGS += -I"@HASHPIPE_INCDIR@"

# AM_CFLAGS is used for all C compiles

AM_CFLAGS = -fPIC -O3 -Wall -Werror -fno-strict-aliasing -mavx

hw_databuf = hw_databuf.h \
hw_databuf.c

hw_threads = hw_thread1.c \
hw_thread2.c

# This is the flag_gpu plugin itself

lib_LTLIBRARIES = hw_hashpipe.la

hw_hashpipe_la_SOURCES = $(hw_databuf) $(hw_threads)

hw_hashpipe_la_LIBADD = -lrt -L/usr/local/cuda/lib64

hw_hashpipe_la_LDFLAGS = -avoid-version -module -shared -export-dynamic --enable-shared

hw_hashpipe_la_LDFLAGS += -L"@HASHPIPE_LIBDIR@" -Wl,-rpath,"@HASHPIPE_LIBDIR@"

A.6 configure.ac

This is the required auto-configure script needed for automake.

# -*- Autoconf -*-

# Process this file with autoconf to produce a configure script.

AC_PREREQ([2.63])

AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS])

AM_INIT_AUTOMAKE([foreign])

LT_INIT

AM_SILENT_RULES([yes])

#AC_CONFIG_SRCDIR([paper_databuf.h])

AC_CONFIG_HEADERS([config.h])

AC_CONFIG_MACRO_DIR([m4])

# Set CFLAGS to nothing if it is not set by the user. This prevents AC_PROG_CC

# from setting the (supposedly reserved-for-the-user!) variable CFLAGS in

# Makefile, which prevents AM_CFLAGS in Makefile.am from setting an

# optimization level. For more details, see

# http://lists.gnu.org/archive/html/autoconf/2006-04/msg00007.html

AS_VAR_SET_IF(CFLAGS,[],[CFLAGS=])

# Checks for programs.

AC_PROG_CC

# Check for HASHPIPE and xGPU and total_power

AX_CHECK_HASHPIPE

AX_CHECK_XGPUINFO
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AX_CHECK_FLAGBEAMFORM

AX_CHECK_FLAGPOW

# Checks for libraries.

AC_CHECK_LIB([pthread], [pthread_create])

AC_CHECK_LIB([rt], [clock_gettime])

AC_CHECK_LIB([z], [crc32])

# Checks for header files.

AC_CHECK_HEADERS([netdb.h stdint.h stdlib.h string.h sys/socket.h sys/time.h unistd.h zlib.h])

# Checks for typedefs, structures, and compiler characteristics.

AC_C_INLINE

AC_TYPE_INT32_T

AC_TYPE_INT64_T

AC_TYPE_OFF_T

AC_TYPE_SIZE_T

AC_TYPE_UINT32_T

AC_TYPE_UINT64_T

AC_TYPE_UINT8_T

# Checks for library functions.

AC_FUNC_MALLOC

AC_CHECK_FUNCS([clock_gettime memset socket crc32])

AC_CONFIG_FILES([Makefile])

AC_OUTPUT

A.7 hashpipe.m4

This script looks for the installed HASHPIPE libraries so the plugin can be installed.

# serial 1 hashpipe.m4

AC_DEFUN([AX_CHECK_HASHPIPE],

[AC_PREREQ([2.65])dnl

AC_ARG_WITH([hashpipe],

AC_HELP_STRING([--with-hashpipe=DIR],

[Location of HASHPIPE files (/usr/local)]),

[HASHPIPEDIR="$withval"],

[HASHPIPEDIR=/usr/local])

orig_LDFLAGS="$LDFLAGS"

LDFLAGS="$orig_LDFLAGS -L$HASHPIPEDIR/lib"

AC_CHECK_LIB([hashpipe], [hashpipe_databuf_create],

# Found

AC_SUBST(HASHPIPE_LIBDIR,$HASHPIPEDIR/lib),

# Not found there, check HASHPIPEDIR

AS_UNSET(ac_cv_lib_hashpipe_hashpipe_databuf_create)

LDFLAGS="$orig_LDFLAGS -L$HASHPIPEDIR"

AC_CHECK_LIB([hashpipe], [hashpipe_databuf_create],

# Found

AC_SUBST(HASHPIPE_LIBDIR,$HASHPIPEDIR),

# Not found there, error
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AC_MSG_ERROR([HASHPIPE library not found])))

LDFLAGS="$orig_LDFLAGS"

AC_CHECK_FILE([$HASHPIPEDIR/include/hashpipe.h],

# Found

AC_SUBST(HASHPIPE_INCDIR,$HASHPIPEDIR/include),

# Not found there, check HASHPIPEDIR

AC_CHECK_FILE([$HASHPIPEDIR/hashpipe.h],

# Found

AC_SUBST(HASHPIPE_INCDIR,HASHPIPEDIR),

# Not found there, error

AC_MSG_ERROR([hashpipe.h header file not found])))

])
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