
FLAG Spectral Line Software

Nickolas M. Pingel

June 27, 2019

1 Introduction

This document provides descriptions and cookbook-style examples of usages of

the codes contained within the SpectralFiller python software package. This

suite contains scripts that perform data monitoring, post-correlation beamform-

ing, calibration, and imaging of data taken with the Focal L-Band Array for the

Green Bank Telescope (FLAG), which is a cryogenically cooled, 19 element,

dual-polarization phased array feed (PAF). FLAG is optimized to operate be-

tween frequencies ranging between 1 GHz and 2 GHz, with a focus on spectral

line mapping — specifically the 1420.406 MHz transition of neutral hydrogen

(Hi) — pulsar timing, and pulsar/transient detection.

The remainder of this document will focus on how to monitor, reduce,

and image data specific to the spectral line mapping and calibration modes of

FLAG. This document is to be used in conjunction with documentation on the

usage of the backend modes1 while observing. This documentation is organized

as follows: Section 2 outlines the formats of the raw and final data products;

Section 3 describes the logic, usage, and examples, of the scripts that perform

the post-correlation beamforming and transition the data formats into their final

formats that can be used in the GBO computing environment; Section 5 pro-

vides examples of observing configuration and Astrid scripts, Section 6 describes

and provides examples for utility scripts that are to be used to monitor FLAG

observations; and Section 7 summarizes and provides examples of the data cali-

bration, reduction, and imaging scripts.

1

Figure 1: The structure of a covariance matrix used in beamforming. The num-

bers preceding each row/column correspond to the dipole element. Each element

of the matrix stores the correlation between dipole elements i and j for a single

frequency channel, k. The output is ordered in a flattened one-dimensional ar-

ray that needs to be reshaped into a 40×40 matrix before beamforming weights

can be applied. Additionally, due to xGPU limitations, the output size is 64×64,

which results in many zeros that need to be thrown away in data processing.

2

2 Raw Data Formats and SDFITS

2.1 Raw Data

The backend for the PAF was developed in collaboration with the Brigham Young

University (BYU), West Virginia University (WVU) and the Green Bank Obser-

vatory (GBO). It consists of five high performance computing nodes (HPCs),

each equipped with two Nvidia GeForce Titan X Graphical Processing Units

(GPUs). Each HPC was connected to the Reconfigurable Open Architecture

Computing Hardware (ROACH)2 Field Programmable Gate Arrays (FPGA)

boards and received one fifth of the total bandwidth of 151.59 MHz. Each HPC

can run in three basic modes: (1) the calibration correlator mode (CALCORR)

wherein the bandpass was made up of 500 discrete ‘coarse’ channels each 0.30318

MHz wide; (2) The polyphase filter bank (PFB) correlator mode (PFBCORR)

where a 30.318 MHz (100 coarse channels) section of the original bandpass is se-

lected to be sent through a PFB to obtain finer channelization. In this mode, a

contiguous set of five coarse channels is output to 160 ‘fine’ channels for a final

frequency resolution of 9.47 kHz; (3) the real-time beamformer mode (RTBF)

where precomputed beamformer weights are read in and applied to save beam-

formed spectra to disk. This mode is designed to be used to detect transient

sources such as pulsars and fast radio bursts. The remaining discussion will fo-

cus solely on the CALCORR and the PFBCORR modes.

In both correlator modes, each GPU runs two correlator threads mak-

ing use of the xGPU library3, which is optimized to work on FLAG system pa-

rameters. Each correlator thread handles one-twentieth of the total bandwidth

made up of either 25 non-contiguous coarse frequency channels or 160 contigu-

ous fine channels and writes the raw output to disk in a FITS4 file format. The

data acquisition software used to save these data to disk was borrowed from de-

velopment code based for the Versatile GBT Astronomical Spectrometer (VE-

GAS) engineering FITS format. The output FITS file from each correlator thread

is considered a ‘bank’ with a unique X-engine ID (XID; i.e., the correlator thread)

ranging from 0 to 19 that is stored in the primary header of the FITS binary ta-

ble.

The raw data output for both correlator modes are the covariance ma-

trices denoting the correlations of individual dipole elements. However, due to

1https://safe.nrao.edu/wiki/bin/view/Beamformer/
2https://casper.berkeley.edu/wiki/ROACH-2_Revision_2
3https://github.com/GPU-correlators/xGPU/tree/master/src
4https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

3

https://safe.nrao.edu/wiki/bin/view/Beamformer/
https://casper.berkeley.edu/wiki/ROACH-2_Revision_2
https://github.com/GPU-correlators/xGPU/tree/master/src
https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

xGPU limitations, the covariance matrices are of size of 64×64 (with elements

for row and column over 40 being set to zero) and flattened to a one-dimensional

data vector whose length depends on the specific correlator mode. An example

of how the correlations are ordered is illustrated in Figure 1. Here, Ri,j
k corre-

sponds to the correlation between dipole i and j at frequency channel k. When

in CALCORR mode, the bank file corresponding to XID ID 0 contains covari-

ances matrices for frequency channels 0 to 4, 100 to 104, ..., 400 to 404; the XID

1 bank file stores covariance matrices for frequency channels, 5 to 9, 105 to 109,

..., 405 to 409. When in PFBCORR mode, the covariance matrices for channels

0 to 159 are stored in the bank file corresponding to XID 0 and continue in a

linear and contiguous fashion such that the bank file corresponding to XID 19

stores data for frequency channels 3039 to 3199. The logic during data reduc-

tion is to process each frequency channel individually, then sort the result into

the final bandpass based on the XID and mode in which the data were taken.

The methods employed to construct the two-dimensional form of the covariance

matrices and sort the frequency channels are discussed in depth in Section 3.

2.2 SDFITS

A Single-Dish FITS (SDFITS) file is a combination of binary table FITS tables

that describe a collection of integrations taken with the GBT. The data stored

in these binary tables are specific for the GBO computing environment such that

the files can be read into and manipulated by GBTIDL5. The primary goal of

this python package is to transform the raw dipole correlations into beamformed

spectra that represent power as a function of frequency channels, which can sub-

sequently be calibrated with reference scans. For more information on the SD-

FITS format, see the following links:

https://safe.nrao.edu/wiki/bin/view/Main/SdfitsDetails

https://casa.nrao.edu/aips2_docs/notes/236/node14.html

3 Core Software

The scripts that drive the creation of an SDFITS file are PAF Filler.py — in

essence the ‘main’ function of the program — and the two modules metaData-

Module.py and beamformerModule.py. The following subsections describe the

logic flow for each component, in addition to the script that is used to unpack

the binary files that contain the complex weights and convert them to FITS files.

5http://gbtidl.nrao.edu/

4

https://safe.nrao.edu/wiki/bin/view/Main/SdfitsDetails
https://casa.nrao.edu/aips2_docs/notes/236/node14.html
http://gbtidl.nrao.edu/

FITS file (WVU) Binary file (BYU)

0 (boresight) 3 (boresight)

1 0

2 1

3 4

4 6

5 5

6 2

Table 1: Conversion between beam name conventions

3.1 WeightFiller.py

The foremost step in the filling and calibration process of FLAG data is to con-

vert a set of 20 binary files (one for each bank) contain the beamforming weight

data to FITS files. The binary table structure of a FITS file allows for the weights

to be readily accessible to the primary filling software for the application to

the raw correlations to create beamformed bandpasses. Figure 2 (courtesy of

Dr. Richard Black) summarizes the format of these binary files. The first com-

ponent of the file contains (in sequential order) the real and imaginary compo-

nent of the complex weight for each polarization, beam, coarse frequency chan-

nel, and dipole element. Note that due to the limitations of xGPU — the GPU

based FX correlator software that drives the throughput processes of the back-

end — the correlation matrices are of shape 64×64. Note here that while we are

only interested in the first 38 elements (corresponding to the number of dipoles

multiplied by the two linear polarizations), for ease of formatting the binary ta-

ble, the irrelevant correlations are kept at this stage to be thrown out by subse-

quent processing codes. It is also very important to note that the naming con-

vention between beams changes from the binary to FITS version of the file. The

change is implemented so the typical seven beam configuration will mimic the

convention of other multi-beam receivers (e.g., Arecibo’s ALFA); that is, Beam

0 in the FITS file format refers to the boresight beam, beam 1 is the upper left

beam, and the subsequent beam numbers increase in a clockwise fashion. Ta-

ble 1 summarizes how the beam names are altered from the binary (BYU) to

FITS (WVU) convention. Subsequently, all beam names in this document refer

to the WVU convention.

For the typical seven beam pattern, the total size of these binary files

are 179392 bytes (4×2 total bytes per float pair representing a complex weight

value × 2 polarizations × 7 beams × 25 coarse frequency channels × 64 to-

5

Figure 2: A summary of the structure of the binary files that contain the com-

plex beamforming weights.

6

tal elements = 179200 bytes + 192 bytes for the header payload). The script

uses the built-in struct package of python to unpack these binary files and ar-

range the complex weight values into a numpy array of 14×3200 (7 beams × 2

polarizations)×(64 elements×polarizations × 25 frequency channels×2 for the

complex pair).

Before writing out the final FITS file, the metadata that contains the

beam offsets, calibration set filenames, beamforming algorithm, and XID must

also be sorted. Note that the ‘beam offsets’ refer to the cross-elevation and ele-

vation offset (in units of degs) from the telescope pointing center recorded in the

ancillary Antenna FITS file. An individual FITS file is written to disk for each

bank. It contains a primary header that lists the calibration set filename, beam-

forming algorithm used, and XID, with the beamforming weights and offsets

available in the first (and only) binary table extension ‘Beam Weights and Off-

sets’. The name of the weight columns is formatted as BeamNumberPolariztion

(e.g., Beam5X). The final two columns of this binary table extension hold the

beam offsets and are either BeamOff XEL or BeamOff EL. The length of the re-

turned data vector are equal to the length of beam weight columns, though only

values with indices between 0 and the total number of beams contain meaning-

ful data; the reminder of the vector is padded by zeros. Note that the beam for

which an offset value is associated with corresponds to the index within the re-

turned data vector; that is, the 0th indexed beam offset value corresponds to the

0th beam, the 1st indexed beam offset value corresponds to the 1st beam, etc.

The generated FITS files have the naming convention w PROJECT BANKNUM.FITS,

and are stored in the directory weight files that is created within the direc-

tory where the script is ran. The only argument is the directory path to the bi-

nary files. An example call that successfully generates complex weights in the

form of FITS files is:

$ weightFiller /lustre/projects/flag/AGBT17B_360_02/BF/

3.2 PAF Filler.py

As stated above, this script plays the role of the ‘main’ program that ultimately

drives the generation of the beamformed SDFITS file. Figure 3 illustrates the

logic flow of the program. An example of a syntactically correct call is:

$ ipython PAF_Filler.py /home/gbtdata/AGBT17B_360_01

/lustre/project/flag/AGBT17B_360_03/BF/weight_files/w_17B_360_02_*.FITS

1420.405e6 -b 2018_08_01:00:00 2018_08_01:52:00 -o NGC891 -g

2018_08_01:05:00 2018_08_01:06:00 2018_08_01:07:00 -m 1 3

↪→

↪→

↪→

7

Figure 3: Logic flow of the PAF Filler.py script, which contains the ‘main’ func-

tion that drives the beamforming generation of an SDFITS file per beam per

observed object.

The first and second inputs are paths to your GBO data project (that

will generally begin with /home/gbtdata/) and the path to the FITS files that

contain the complex weights. It is recommended that one replaces the bank

letter with the wildcard character ‘*’. The third input is the rest frequency in

units of Hz. The rest frequency available in ancillary FITS files generated by the

telescope corresponds to the topocentric central frequency of the full 150 MHz

band, so it is recommended the user sets the value explicitly for now. These

paths and rest frequency value are the only inputs that are required by the user.

Space delimited list of timestamps after the ’-b flag represent bad scans that,

for whatever reason, are not required for your subsequent analysis. If the ‘-o’

flag is specified, only scans associated with the listed objects will be processed.

In this example, only the mapping scans for NGC891 will be processed. The

timestamps proceeding the the -g flag will be the only scans for which SDFITS

files will be created. Finally, the integers listed after the -m flag denote only the

beams one wishes to create SDFITS for. If any of these options are missing, all

available timestamps will be processed (e.g., ALL timestamps from an associated

session will be processed if no flags are listed after the project ID; or all times-

tamps associated the explicitly listed observed objects will be processed if no

other flags are provided).

8

After parsing the flags to determine what sources and beams the user

wishes to fill, the program collate all the associated scans to an observed source

(e.g. all of the scans that targeted NGC891) for lowest numbered requested

beam (default is to begin boresight beam numbered 0). For each processed scan,

a global data buffer for the XX and YY polarizations is created with dimensions

integrations×frequency channels to hold the beamformed data. As described

in the previous section, the backend creates 20 separate bank files that contain

1/20th of the total bandwidth. One-by-one, these bank FITS files are unpacked

and passed to beamformer object created by beamformingModule.py (see 3.3)

through the object function getSpectralArray(). This function within the

beamformer module applies the complex weights to create beamformed spec-

tra. The beamformed XX and YY bandpasses are returned, and based on the

observing mode (i.e., CALCORR or PFBCORR mode), the frequency chan-

nels contained in the 1/20th bandpass chunk are sorted into the global data

bufferS though the internal sortBandpass() method. Once all scans for the cur-

rent beam have been beamformed and sorted, the global data buffers and other

pertinent information about the collection of scans are passed to the metadata

object (see 3.4 through the constuctBinTableHeader() object function. Fi-

nally, once the FITS binary table has been constructed for a given beam, the

FITS file (in SDFITS format) is written to disk in whichever directory the call

to PAF Filler.py was made. The process then repeats until all beams for all ob-

served objects are processed.

3.3 beamformingModule.py

This python object module performs a majority of the processing. An instance

of this object is initialized in PAF Filler.py by passing the path to the raw data

and weights. Other default attributes of the object that get defined upon ini-

tialization are a reference vector that holds the indices to sort the order of the

raw correlations to a more suitable matrix format (see Figure 1) and the project

ID. The method that drives the transformation from raw correlations between

dipoles to (un-calibrated) beamformed bandpasses is getSpectralArray().

PAF Filler.py supplies this method with the name of the FITS file that is cur-

rently being processed, the raw data array, the beam number that is being pro-

cessed, and the XID.

The first action is to open and sort the complex weights using the in-

ternal getWeights() method, which requires the XID, beam, and number of

frequency channels (i.e., 25 or 160 depending on calibration or fine channelized

mode). This particular method opens the associated weight FITS file and for-

9

mats the weights to be organized in a 2D numpy array of complex type with the

rows representing the 25 coarse frequency channels, while the columns represent

the correlations of the 40 dipoles.

Once the complex weights are in the correct format, a loop to process

individual integrations is initiated. The internal method getCorrelationCube()

will sort the raw correlations for each integration to be in the format of a 3D

numpy array of complex type with rows and columns both representing the cor-

relations between dipoles and the third axis containing these correlation matri-

ces for the associated frequency channel. More explicitly, for a 2D plane of this

data cube, the first element of the first column holds the auto-correlation (ρ) be-

tween the first dipole (dp) ρdp1,dp1, the second element is the cross-correlation be-

tween dipoles 1 and 2, or ρdp1,dp2, the third holds ρdp1,dp3, ..., and the last holds

ρdp1,dp40. The sorting is performed by first grabbing a chunk of 2112 total corre-

lation pairs (every frequency channel will ALWAYS have 2112 correlation pairs)

from the input raw 1D data vector and using an index look-up vector located in

SpectralFiller/misc/gpuToNativeMap.dat that is generated with the script

SpectralFiller/utils/GpuToFISHFITS Map.py. Since the correlations are re-

dundant, the corresponding transposed element in a row is the simply the conju-

gate value of the column value. The final returned cube will have dimensions of

40×40×channels, where channels will either be 25 or 160, depending on whether

we are in CALCORR or PFBCORR mode. Recall that two important aspects:

(1) irrelevant correlations caused by xGPU limitations are thrown away at this

stage; (2) dipoles will generally be zero as they correspond to two unused data

streams.

Once a correlation cube has been constructed for the integration be-

ing processed, the method, getSpectralArray(), will loop over each frequency

channel (ν) and call the internal method processPol() and feed it the 2D plane

of dipole correlations (R) and associated 1D weight vector (w). This method

applies

P (ν) = wH ·R ·w, (1)

where the H superscript denotes the Hermition operator. The returned value,

P (ν), is the the beamformed power value at frequency ν. Recall that for the

CALCORR mode, the channels are not contiguous, and will be sorted in PAF Filler.py.

If we are in PFBCORR mode (spectral line mode), the corresponding set of five

complex weight values are selected for processing each chunk of 32 contiguous

fine channels. Regardless of mode, a 2D array of raw, beamformed spectra is

returned to PAF Filler.py with the shape integrations×frequency to be sube-

quently sorted into global data buffers that hold the power as a function of fre-

10

quency channel.

3.4 metaDataModule.py

The metaDataModule is a python object that contains several internal methods

to collate all associated metadata that is saved in ancillary FITS files during a

given observing session. For example, the sky positions of the antenna must be

associated with individual integrations for imaging after data calibration. The

initialization of the object occurs after all bank FITS files associated with an ob-

served object and beam have been processed by the beamforming module. The

project name, path to the raw data, path to the weight FITS files, a list of bank

files, rest frequency, a list of number of banks processed per scan, global XX and

YY data buffers, the beam number, and a boolean flag that denotes whether

we are in CALCORR or PFBCORR are passed upon object initialization. The

method, constructBinTableHeader(), drives the creation of the full binary

FITS table that gets passed back to PAF Filler.py before writing the final SD-

FITS file to disk.

The philosophy of this module is very much object oriented. Essen-

tially, the metaDataModule object contains several attributes (e.g., a valueArrr,

or FITS Column) that will be updated while the metadata is collected for each

SDFITS keyword processed. Once all of the metadata have been collected for a

given SDFITS keyword, the constructed column contained in the metaDataMod-

ule object is added to the a list of FITS columns that make up the full binary

FITS table.

The first step taken by constructBinTableHeader() is the creation of

a blank primary FITS header. A list of SDFITS keyword located in

SpectralFiller/misc/sdKeywords.txt is then read in. Each keyword has an

associated parameter (e.g., the keyword ‘TTYPE1’ is associated with the ‘OB-

JECT’ parameter) contained within the dictionary, keyToParamDict. These

parameters are associated with specific ancillary FITS files generated through-

out a GBT observation. For example, the OBJECT parameter is queried by

this package in the GO FITS file written out by Astrid. A dictionary called

funcDict associates a parameter to an an internal module function that collects

the necessary information. The internal functions to collect the metadata for

specific parameters are getGOFITSParam(), getArbParam(), getLOFITSParam(),

getSMKey(), getAntFITSParam(), and getModeDepParams().

All of these internal methods follow similar logic when collecting the

metadata associated with a parameter: (1) a parameter is passed to the asso-

ciated metadata collection method mentioned above; (2) each file contained

11

within the module fileList attribute is read in and the number of scans is

calculated; this is important since each row in the final SDFITS binary table

is associated with specific integration and scan number; (3) the internal method,

initArr(), is called to initialize a global data buffer that stores all necessary

information as the FITS column is filled in. Once all of the necessary metadata

for a specific paramter has been collated, the object’s attributes Column.param,

Column.comment, and Column.valueArr are filled in and returned to the

constructBinTableHeader() function. Once returned, these object attributes

are added to a list of FITS column objects and reset to process the next SD-

FITS keyword.

There are several more steps to take once all of the metadata asso-

ciated with a given parameter has been collected and stored within individual

FITS columns. Firstly, the beam offsets are stored in the engineering Horizon-

tal coordinate frame (i.e., cross-elevation and Elevation), as opposed to the pre-

ferred Equatorial coordinate frame. The internal method,

offsetCorrection() is called with the current state of the binary table Header

Data Unit (HDU) passed to it.

The pyslalib package, a python wrapper for the slalib6library, is

utilized to apply the beam offsets. The antenna positions recorded during the

observation are collected, in addition to required other metadata such as the hu-

midity, temperature, and LST. The calculation begins by converting the recorded

J2000 coordinates from the Antenna FITS file to the geoapparent reference frame

(center of Earth) using the pyslalib.sla map method. The reference frame

is then changed to that of the GBT through the pyslalib.sla aop using the

latitude and longitude available in the GBT observers guide. The change from

equatorial to horizontal coordinates is then computed utilizing the pyslalib.sla e2h

method. Once in horizontal coordinates of Azimuth (Az) and Elevation (El),

the beam offsets (Azoff and Eloff) and refraction correction are applied using the

equations

El′ = El −∆Eloff + n (2)

Az′ = Az − ∆Azoff

cos(El′)
, (3)

where n is the atmospheric refraction correction available in the Antenna FITS

file. The inverse cosine factor accounts for the conversion between cross-elevation

and Azimuth. After the application of the beam offsets, the new corresponding

6http://star-www.rl.ac.uk/docs/sun67.htx/sun67.html

12

http://star-www.rl.ac.uk/docs/sun67.htx/sun67.html

J2000 values are computed by first computing the topocentric equatorial coor-

dinates through pyslalib.sla h2e, changing reference frame from the GBT to

geocentric via pyslalib.sla oap, before finally using pyslalib.sla amp to pre-

cess the positions back to the mean 2000.0 epoch. If the observations were taken

the Galactic coordinate system, these modified J2000 values are then converted

to the corresponding Galatic longitude and latitude values.

As of Winter 2019, no association between the local oscillator (LO)

and GBO IF system exists for FLAG observing. This means the frequencies

recorded for any observation are in the topocentric reference frame. Now that

the J2000 values of each beam pointing center are available, a proper Doppler

correction can be calculated. Currently the Doppler correction will be applied

such that the IF frequencies will be in the Heliocentric reference frame with the

OPTICAL velocity definition. Translations to other reference frames and ve-

locity definitions (e.g., LSRK in the RADIO definition) can be performed in

GBTIDL during data reduction. The current binary table HDU is passed to the

internal method, radVelCorrection(), for the correction. This function makes

use of RadVelCorr.py, which is an edited version of Frank Ghigo’s radial veloc-

ity correction calculator7. Within this method, the updated RA and Dec val-

ues, as well as the corresponding Universal Time and Date, are passed into the

correctVel() method. The radial correction is then returned. From this value,

the correct central frequency is computed and updated within the binary table

HDU. Once all values for each scan and integration are computed, the CRVAL1,

OBSFREQ and VELDEF parameters are updated before returning the binary

table HDU to the main constructBinTableHeader() method. Once all correc-

tions to the spatial and spectral coordinates have been made, the binary table

HDU is combined with the primary HDU and returned to PAF Filler.py.

4 Installation

5 Observing Scripts

Example configuration, calibration, and science observing scripts are presented

in Figures 4- 7.

7http://www.gb.nrao.edu/GBT/setups/radvelcalc.html

13

http://www.gb.nrao.edu/GBT/setups/radvelcalc.html

5.1 CalcObsTime.py

5.2 Configuration

Because there is currently no true manager for FLAG, the communication and

configuration of the LO must take place through Astrid scripts. The configu-

ration shown in Figure 4 sets the LO to be at a topocentric frequency of 1450

MHz with an associated test-tone at 1500 MHz at a level of -50 dB. This spe-

cific setting effectively turns the test-tone off. For bit/byte/word locking, the

test-tone level should be set to a level of 0 dB. This can be done by changing the

variable ‘Tonelevel’. The rest frequency and test-tone frequency can be set by

changing the variables ‘RestFreq’ and ‘ToneFreq’, respectively. Note that MHz

is the assumed units for these variables. The two functions, ‘setRestFreq’ and

‘setTestTone’, communicate with the LO manager to set the necessary parame-

ters.

5.3 Calibration Scripts

5.3.1 7-PtCal

Figure 5 provides an example script that performs a ‘seven-point calibration’,

which allows for an observer to derive weights for seven distinct beams. The

beam power pattern consists of a central beam is surrounded by six outer beams

in a hexagonal pattern with the beam responses overlapping at the half-power

points. The beam widths are assumed to be 9.1′. In general, the beams are la-

beled such that the boresight is beam ‘0’, beam ‘1’ is the upper left beam, and

the subsequent beam numbers increase in a clockwise fashion. A reference scan

is performed first that is −2 degrees away in cross-elevation from the boresight

and at the same elevation as beam 5. The calibration source (generally one of

the standard GBT flux L-Band flux calibators) is then centered within the bore-

sight beam; next, the telescope will dwell at the center of beams 2, 3, 4, 5, 6,

and 1; the final scan is another reference position again −2 deg away from the

boresight but now at the same elevation of beam 1. Dwelling the telescope at

the desired beam centers will characterize the response of each beam to the cal-

ibrator in that direction to facilitate the derivation of the complex beamformer

weights. The length of the dwell can be set by setting the variable ‘minVal’ to

some fraction of minutes.

14

Figure 4: A summary of the structure of the binary files that contain the com-

plex beamforming weights.

15

Figure 5: An example observing script of a discrete seven-pointing calibration.

16

Figure 5: An example observing script of a discrete seven-pointing calibration

(continued from previous page).
17

Figure 6: An example observing script of a calibration grid.

18

Figure 6: An example observing script of a calibration grid (continued from pre-

vious page).

5.3.2 Calibration Grid

In some cases, it may be pertinent to characterize the response of the array over

a larger field-of-view. In these cases, a the calibration grid can be performed.

Generally, a 30×30 deg2 area around a standard point-source calibration source

is mapped utilizing a RaLongMap procedure with the coordinates set to Encoder

(i.e., horizontal frame). The rows are spaced every 1\10th of a beamwidth (∼0.9

arcminutes) for a total of 34 rows. Likewise, the scanning speed is set such that

integrations are dumped every 1\10th. A total of six reference scans are per-

formed throughout the procedure such that three are evenly spaced in elevation

on each side. The entire procedure takes between 35-40 minutes to complete.

The backend mode should be set to CALCORR for when running these observ-

ing scripts.

5.4 Mapping Scripts

The final observing script in Figure 7 demonstrates a typical science on-the-fly

map an observer can make around an extended source with the backend in PF-

BCORR mode. It is very similar to the usual maps one would make with the

traditional single-pixel feed. In this particular example, the map size is 2×2 deg

(in J2000) with rows spaced every 3′ (for a total of 41) and the time to map one

row set to ∼36 seconds. The time to map a row is set as such to account for the

backend default integration time of 0.5 s in PFBCORR mode. This ensures data

is dumped every 1.67 arcminutes to be adequately spatially Nyquist sampled.

This map will take about 30 minutes (including overhead) to complete.

19

Figure 7: An example observing script of a on-the-fly map.

20

Figure 8: Example graphical output of PAF Peak.py. A scan sequence consists

of two scans that travel a total angular distance of +/- 130 arcminutes with the

source centered in the cut. The solid lines represent the data, while the Gaus-

sian fits are denoted by dashed lines in the equivalent color. The location of the

source and average of the two return fitted means are shown by vertical dashed

black and red lines, respectively.

6 Data Monitoring Scripts

This package comes with several utility scripts contained within the /utils/ di-

rectory that aid the analysis, reduction, and data monitoring of FLAG spectral

line observations. This section will first summarize the functionality and provide

examples of data monitoring scripts before moving on to discuss useful reduc-

tion/analysis scripts.

6.1 Data Monitoring Scripts

6.1.1 PAF Peak.py

Many aspects of an observation can affect the ability of a radio telescope to

point at the desired sky position including atmospheric effects, gravitational

forces that vary with elevation, and the relation between different celestial coor-

dinate systems. To ensure the GBT is pointed correctly, several distinct models

that consider atmospheric conditions and the unique structural irregularities of

21

the GBT make up the overall pointing model (Prestage et al. 2004). While these

are automatically implemented for any observation, there are still arcminute (at

L-Band) corrections that are required. Since FLAG has its own unique back-

end, the continuum receiver is not available thus requiring custom software and

observing scripts whenever we are observing with FLAG. It is recommended to

perform a pointing observation in both cardinal coordinates (cross-elevation and

elevation) before beginning your science observations.

The custom observing scripts replicate the movement of the default

‘Peak’ scans available through astrid. The telescope is moved in +/- directions

for a total of 130 acrminutes with the source centered in the path. There is a

scan for both cross-elevation and elevation cuts. Each scan direction takes 30 to-

tal seconds dumping data out every 0.5 seconds (default for CALCORR mode).

After a scan is completed, the python program, PAF Peak.py, will

plot the normalized total power of the user provided dipole element (usually

one wants to use central dipole 1) as a function of scan time with a Gaussian

fit overlaid for the XX and YY polarizations. The returned fitted mean (in units

of arcminutes) is the required Local Pointing Correction (LPC) that should be

applied by either asking the operator or through the Cleo Device Manager.

To run this script, the user must provide several inputs. The first

input is the project and session name (e.g., AGBT16B 400 01), the second is

the timestamp of the cross-elevation/elevation cut (e.g. 01 18 18 00:00:00), the

third must be either XEL or EL to determine direction (so it knows what FITS

header keywords to look up while determining the antenna pointing), the fourth

being the dipole and must be an integer between 1 and 19, and finally the name

of the calibrator source observed. The flux models of Perley & Butler (2017),

assumed L-Band gain of 1.86 [K/Jy], and the signal-to-noise ratio between the

peak and mean baseline noise is used to estimate a system temperature (Tsys) in

Kelvin.

An example call and the subsequent text output to the terminal is

given below:

$ ipython PAF_Peak.py AGBT16B_400_13 2017_08_04_13:39:28 XEL 1 3C48

-----Fit Statistics (XX Pol)-----

Mean [arcmin]: -0.702110936942+/-0.00985090853533

FWHM [arcmin]: 7.89267743008+/-0.0230746550722

22

Reduced Chi-Sq: 0.0611814952157

Peak Power: 195250265.081

Estimated Tsys [K]: 26.7521799843

-----Fit Statistics (XX Pol)-----

Mean [arcmin]: -0.747401766135+/-0.00971459062521

FWHM [arcmin]: 7.86587937985+/-0.0227553408582

Reduced Chi-Sq: 0.0619439811324

Peak Power: 178499066.518

Estimated Tsys [K]: 26.8164265199

An example of the associated graphical output from the executed

command is shown in Figure 8. See the caption for details on the various lines,

though it is obvious that only a small LPC is required in the XEL direction.

Please note that the estimated Tsys value assumes an aperture efficiency of η =

0.6 Anish Roshi et al. (2017). The plot is saved as a pdf in whichever directory

made the call to PAF Peak.py with the form

‘PeakScan Source Direction Timestamp’

6.1.2 plotDipolePower.py

The remaining routines are used to monitor the incoming data through the sys-

tem. This particular script plots the total power as a function of scan time for

each of the 19 dipoles (and polarization) in 5×4 panel plot.

There are only two user inputs required for this script with the first

being the GBO project ID (e.g., AGBT16B 400 14) and second being the as-

sociated time stamp for the scan (e.g., 2017 08 06 15:42:48). An example out-

put plot is shown in Figure 9. The red number in the top right corner denotes

the dipole number, and the green/blue solid lines denote total power from the

YY/XX polarization. The particular scan being plotted came from a Peak scan

as discussion in the previous subsection. We can see the nice response of the

inner dipoles (i.e., 1, 3, 4, 6, 7), while dipoles such as dipole 8 showed little re-

sponse due to a dead data channel. This plot is useful to ensure the live ele-

23

Figure 9: Example graphical output of plotDipolePower.py. Each panel repre-

sents the total power of a the associated dipole (red number) as a function of

scan time for user provided scan. The green and blue solid lines respectively rep-

resent the YY and XX polarizations.

24

Figure 10: Example graphical output of plotBandpass.py. The XX and YY po-

larizations of the raw autocorrelation from the central dipole (dipole 1). Look to

see the Galactic Hi line is present as a positive indicator. This is also useful to

look for signs of interference in the bandpass and the general shape of the raw

autocorrelations.

ments behave as expected, as well as checking to see if strong sources are de-

tectable in individual dipoles. Note that no plot is inherently saved to disk. If

the user wishes to save the plot, they must do so utilizing the python plotting

GUI.

6.1.3 plotBandpass.py

This script allows the user to see the time averaged bandpass (i.e., averaged over

all integrations contained within an individual scan) in units of raw counts for a

specific dipole. In essence, this is plotting the autocorrelation for the indicated

dipole. This scripts reads in the associated bank FITS files, sorts the channels

based on XID, and finally averages over all integrations to produced the mean

25

bandpass as a function of topocentric frequency. The input to this script are re-

spectively the project ID, time stamp to process, and dipole element (integer 1

to 19).

An example output is shown in Figure 10. At the time of these ob-

servations, the PFB mode suffered from ‘scalloping’, where power at the edge of

each five coarse channels set dropped by about 3dB creating the distinct drop in

counts seen across the bandpass. These are expected, and should be mitigated in

a future implementation of the PFB mode. In general, an observer should keep

an eye on the overall bandpass shape, the presence of Galactic Hi at 1420.406

MHz, and the presence of interference in either (or both) polarizations. Furthor-

more, this scan had several bank dropouts as evidenced by the drop in power

near 1415 and 1425 MHz. An example call to create the output in Figure 10 is:

$ ipython plotBandpass.py AGBT16B_400_14 2017_08_06_16:05:19 1

7 Reduction/Analysis Scripts

7.1 calcSysFlux.pro (Grid/7pt)

The first step in calibration of the raw beamformed spectra is to determine the

scaling factor for the ‘On/Off’ power ratios for each individually formed beam.

While Tsys/η is a directly measurable quantity through the power ratio of the

signal and noise correlation matrices, Tsys itself must take on some assumption of

the true value of η. The flux density equivalent of Tsys, or system equivalent flux

density (SEFD), makes no implicit assumption of η as it folds in the measurable

ratio. The IDL scripts, calcSysFlux Grid.pro and calcSysFlux 7pt.pro can

be used to calculate the SEFD for grid and seven-point calibration scans, respec-

tively.

Both scripts require six total inputs. The first input for both scripts is

always a string of the calibrator source used. A user can choose from the sources:

3C48, 3C123, 3C38, 3C147, VirgoA, 3C286, 3C295, 3C353, and CygnusA. The

script uses this string to look up dictionary values that store the coefficients

used in Equation 1 of Perley & Butler (2017) to compute the source flux Ssrc

(and statistical uncertainties) that is used as a flux scaling factor. The next four

inputs are always sequentially increasing channel numbers used to define two

channel regions — generally bracketing the Hi line — whose power values are

used to compute the statistics. The last input specifies the first Off scan of a

seven point calibration scan when using calcSysFlux 7pt.pro, and the first Off

scan in the calibration grid procedure for calcSysFlux Grid.pro. Both scripts

26

are optimized to determine the calibrator flux and SEFD at 1420.406 MHz. The

user can change the hard-coded value by adjusted the variable ‘freqVal’.

The SEFD is given by

SSEFD =
SCalSrcPOff

POn − POff

, (4)

where POn and POff are respectively the On and Off power values taken at the

frequency channel corresponding to 1420.406 MHz — usually channel 150 if the

LO is set near 1450 MHz. Two distributions of On and Off raw beamformed

power values are built from the values contained within the two channel regions

defined by the user and fit with separate Gaussian functions. For the seven-point

procedure, the power value distributions are built from averaging the integra-

tions of the corresponding Track scans. For the calibration grid, where the tele-

scope is constantly slewing, only the single integration closest to the desired off-

set for a formed beam can be used. The distribution of On power values there-

fore only consists of those within the bandpass of that specific integration. The

off distributions consists of the power values in the nearest (in angular distance)

reference scan averaged over all integrations.

The respective uncertainties are the standard deviation returned by

these Gaussian fits. If these fits fail to converge (e.g., due to poor bandpass

shape), the statistical standard deviation is used. All power values are corrected

for atmospheric attenuation. The final uncertainty for the SEFD value is com-

puted by propagating the statistical uncertainties of POn, POff , and SCalSrc. The

script will report the final SEFD and associated propagated uncertainty.

7.2 smooth shift.pro

Just as we do in the custom GBTIDL pipeline developed to reduced on-the-fly

mapping data from VEGAS, the spectra will be smoothed before calibration.

All of FLAG’s observing modes are considered to be ‘total power’; that is, there

are no separate sig, ref, or cal states (i.e., there is no noise diode firing). The

native resolution of the PFBCORR mode is 9.47 kHz. For extragalactic science,

a good velocity resolution is 5.2 km s−1 (24.414 kHz); the smoothing kernel to

set in smooth shift.pro is therefore 24.414 kHz / 9.47 = 2.57695, or [0.288475, 1,

1, 0.288475]. An example call in GBTIDL is

$ smooth_shift, 'NGC6946', 'AGBT16B_400_12_NGC6946_Beam0_ss.fits',

kernel = [0.288475, 1, 1, 0.288475]↪→

27

7.3 PAF edgeoffkeep.pro

After the user has taken the optional step of smoothing the raw beamformed

spectra, calibration can be undertaken using the derived SEFD values from Sec-

tion 7.1. An example of a raw, smoothed is shown in Figure 11. The nulls, or

‘scalloping’, seen every 303.18 kHz (every 32 fine frequency channels) is an arti-

fact caused by the two stage PFB architecture approach currently implemented

in the backend. As the raw complex time series data are processed within the

ROACHs, a response filter is applied in the coarse PFB such that the adjacent

channels overlap at the 3 dB point to reduce spectral leakage. This underly-

ing structure becomes readily apparent after the fine PFB implemented in the

GPUs, however. The scalloping therefore traces the structure of each coarse

channel across the bandpass. While the structure is somewhat mitigated in the

calibrated data (since there is a division by a reference spectrum), power varia-

tions caused by spectral leakage (power from adjacent channels) in the transition

bands of the coarse channel bandpass filter result in residual structure. Addi-

tionally, this scheme leads to signal aliasing stemming from the overlap in coarse

channels. This does not hinder the performance of FLAG in terms of sensitivity,

but a fix for the signal aliasing is a top priority going forward.

This code uses the first and last four integrations of a scan to create

an average reference spectrum (Poff) in units of counts. The bandpasses of each

integration of each scan (and both polarizations) are then considered as the sig-

nal (Psig). Each integration is scaled such that

SBP = SSEFD

(
Psig − Poff

Poff

)
, (5)

where SSEFD is calculated from Equation 4 and SBP is the final calibrated band-

pass in units of Jy. This code also utilizes a user provided channel channel range

to fit a polynomial (usually of order 3) and remove residual baseline structure.

Finally, an output file name is needed. An example call is

$ PAF_edgeoffkeep, 'NGC6946', Tsys_Y = 10, Tsys_X = 10, chanRange =

[500, 1500, 2000, 2500], order = 3, fileout =

'AGBT16B_400_12_NGC6946_Beam0_edge_ss.fits'

↪→

↪→

7.4 PAF chanBlank.pro & PAF chanShift.pro

To mitigate the aliasing from the scallopping behavior, the affected frequency

channels in the raw beamformed spectra can be blanked with

28

PAF chanBlank.pro (i.e., before smoothing/calibration). Generally, these blanked

data can now be smoothed/calibrated normally, although excessive dropouts

across the bandpass could make a baseline fit difficult. The inputs are simply

the source name and name of an output file. An example call is

$ PAF_chanBlank, 'NGC6946',

fileout='AGBT16B_400_12_NGC6946_Beam0_chanBlank.fits'↪→

Finally, before the smoothed, calibrated, and blanked data can be im-

aged, the channels in the data set corresponding to the higher LO setting must

be shifted up by the equivalent of 151.59 MHz to align in channel space cor-

rectly. This corresponds to 6.2 channels when smoothed to 5.15 km s−1 as in

the example in Section 7.2. The script,

PAF chanShift.pro can be used to accomplish this last reduction step. There

are three necessary inputs: (1) the source name; (2) an output file name; (3) and

the value with which to shift the channels by. An example call is:

$ PAF_chanShift, 'NGC6946',

fileout='AGBT16B_400_12_NGC6946_Beam0_edge_ss_chanBlank_shift.fits',

chanShiftVal = 6.2

↪→

↪→

7.5 gbtgridBFCubes.sh

This is a bash script that calls the GBO program, gbtgridder in order to image

each SDFITS file, as well as create a combined cube. It is set up to create cubes

with Gaussian-Bessel convolution function, have 128×128 pixels each 105 arcsec-

onds in extent, and a rest frequency of 1420.406 MHz. A single example call to

the gridding program is:

$ gbtgridder AGBT16B_400_12_NGC6946_Beam0_edge_ss.fits

--output=AGBT16B_400_12_NGC6946_Beam0_cube -k gaussbessel

--mapcenter 308.72 60.15 --pixelwidth 105 --restfreq 1420.406

--noweight --noline --nocont

↪→

↪→

↪→

The last options suppress a weight, line, and continuum image from

being output. The user will need to change the ‘projID’, ‘session’, ‘obj’, ‘ra’,

‘dec’ to match the desired input file name, observed object, and major and mi-

nor coordinates of the map center (in either J2000 or Galactic), respectively.

29

Figure 11: An example of an uncalibrated, beamformed spectrum as seen in a

GBTIDL plotter window taken from the 35th integration of the 19th column of

a DecLatMap scan of NGC6946. The 3 dB drop in power (i.e., ‘scalloping’) is an

artifact of the two step PFB implementation of the backend (see text).

30

7.6 plotBeamPatterns.py

This script constructs the formed beam patterns and provides a look at the

beam profiles. The beam pattern of the ith beam at the kth frequency channel

as a function of angle θ (I ik) is given by the equation

I ik =
∣∣∣w (θi)

H âk (θi)
∣∣∣2 , (6)

where w (θ) is a maxSNR beamformer weight vector for a beam pointed in the

direction θi and âk (θi) is the array steering vector. The steering vector is deter-

mined for a general pointing by the equation

âk (θ) =
√
λmax,kR̂offṽk, (7)

where ṽk is the dominant eigenvector (corresponding to the largest eigenvalue,

λmax,k) when solving the generalized eigenvalue equation.

The output consists of two plots: (1) a seven panel plot showing the

formed beam patterns on the sky in units of dB (2) a seven panel plot show-

ing perpendicular profiles with Gaussian fits. In addition to the output plots,

four numpy arrays that are generate by the code are saved to disk in the form

of a binary file via the package pickle. The four variables are the cross-elevation

and elevation coordinates of the steering vectors and the YY and XX beam pat-

tern responses at each of these points. The information stored in these arrays

is enough to interpolate the pattern responses to a well-defined grid in order to

image the patterns at some later time.

The script will report the FWHM of the Gaussian fits and the esti-

mated area in square arcseconds. At the time of this writing, the script needs

access to MatLab files produced by code written by BYU. Specifically, the ag-

gregated grid, weights, and tsys.mat files, which contain the steering vectors for

each beam and cross-elevation and elevation. The three inputs are project value

(assuming a hard coded location), calibration scan time (either grid or seven),

and a path to the directory that holds the weight FITS files. An example call is:

$ ipython plotBeamPatterns.py AGBT16B_400_12 grid

../../data/AGBT16B_400/AGBT16B_400_12/weight_files↪→

/fits_files/scaledWeights/

Figure 12 gives an example output of this script when applied to a

standard calibration grid performed on 3C295. The red x’s in the plots show-

ing the individual beam power patterns denote the beam pointing center (ac-

cording to information stored in the weight FITS files) and the red dashed lines

31

show the location of the cross-elevation/elevation profile cuts in the bottom plot.

The intersection of the dashed lines represent the peak response of each formed

beam. The central beam is quite Gaussian, while the outer beams show devia-

tion from Gaussinity and have more prevalent sidelobe structure.

References

Anish Roshi, D., Shillue, W., Fisher, J. R., et al. 2017, ArXiv e-prints,

arXiv:1711.02204

Perley, R. A., & Butler, B. J. 2017, ApJS, 230, 7

Prestage, R. M., Constantikes, K. T., Balser, D. S., & Condon, J. J. 2004, in

Proc. SPIE, Vol. 5489, Ground-based Telescopes, ed. J. M. Oschmann, Jr.,

1029–1040

32

Figure 12: above: The formed beam pattern derived from a calibration grid The

red x symbols denote the intended beam centers. The intersections of the verti-

cal and horizontal dashed red lines denote the location of the peak response of

each formed beam. The contours represent levels of −2, −5, −10, and −15 dB.

below : Beam profiles along the dashed red lines in the first panel with Gaussian

fits represented by dashed lines.

33

34

	Introduction
	Raw Data Formats and SDFITS
	Raw Data
	SDFITS

	Core Software
	WeightFiller.py
	PAF_Filler.py
	beamformingModule.py
	metaDataModule.py

	Installation
	Observing Scripts
	CalcObsTime.py
	Configuration
	Calibration Scripts
	7-PtCal
	Calibration Grid

	Mapping Scripts

	Data Monitoring Scripts
	Data Monitoring Scripts
	PAF_Peak.py
	plotDipolePower.py
	plotBandpass.py

	Reduction/Analysis Scripts
	calcSysFlux.pro (Grid/7pt)
	smooth_shift.pro
	PAF_edgeoffkeep.pro
	PAF_chanBlank.pro & PAF_chanShift.pro
	gbtgridBFCubes.sh
	plotBeamPatterns.py

